Skip to main content

Home/ foe_2013/ Group items tagged Data

Rss Feed Group items tagged

Enrique Diaz Romero

R Package for Data Mining - RDataMining.com: R and Data Mining - 0 views

  • The package will provide various functionalities for data mining, with contributions from many R users. 
  • To forester the development of data mining capability in R and facilitate sharing of data mining codes/functions/algorithms among R users
  • Function authors will be acknowledged as authors of corresponding functions in help documentation and manual of the package
  • ...8 more annotations...
  • Function authors will be responsible for the development, maintenance and documentation of their contributed functions
  • It is far beyond the capability of a single team, even several teams
  • Data Exploration
  • Decision Trees
  • Association Rules
  • Text Mining
  • R and Data Mining: Examples and Case Studies
    • Enrique Diaz Romero
       
      Ejemplo de paquete para la minería de Datos: rdatamining.com, se encarga de la recolección de algoritmos y funciones de DataMining en R para la confección de un gran paquete que incluya todos estos, ya que muchas veces se realizan numerosos algoritmos, pero no se comparten al  no crear paquetes para solo un algoritmo. Ademas, mantiene la propiedad del creador del algoritmo permitiendo eliminar este del paquete cuando quiera y abandonar el proyecto. Como ejemplos podemos ver, la exploración de datos, los arboles de decisiones, agrupaciones jerarquicas, text mining, ect Ademas cuenta con un gran numero de libros.
  •  
    Paquete de R para Data Mining, información y objetivo
David Moya

What is R? | inside-R | A Community Site for R - 1 views

    • Carlos Espinosa
       
      R desallorador de análisis estadístico siendo sus principales funciones la manipulación de datos,modelo estadístico y un abanico de funciones del análisis de datos que necesites.R es una comunidad on-line abierta en crecimiento.
    • David Moya
       
      R es usado sobretodo para crear programas que realicen estadisticas, ya que fue creado para ello principalmente. Con el se pueden hacer análisis estadísticos, predicciónes, modelos... Tiene herramientas que permiten usar poco código para programar estas estadisticas y modelos. Además es un proyecto libre por lo que puedes tener acceso al código fuente y mejorarlo. Gracias a esto y a la gran comunidad que tiene, actualmente es de una gran calidad y tiene disponibles varios "add-on packages".
  • Complete data analyses can often be represented in just a few lines of code.
  • ...7 more annotations...
  • R is a programming language: you do data analysis in R by writing scripts and functions in the R programming language. R is a complete, interactive, object-oriented language: designed by statisticians, for statisticians.
  • R is data analysis software: data scientists, statisticians, analysts, quants, and others who need to make sense of data use R for statistical analysis, data visualization, and predictive modeling.
  • R has benefited for over 15 years from the "many-eyes" approach to code improvement, and as a result has an extremely high standard of quality and numerical accuracy.
  • R is an open-source software project
  • you can download and use R for free, but the source code is also open for inspection and modification to anyone who wants to see how the methods and algorithms work under the covers.
  • R is an environment for statistical analysis: Available in the R language are functions for virtually every data manipulation, statistical model, or chart that the data analyst could ever need. Not only are all the "standard" methods available, but because most cutting-edge research in statistics and predictive modeling is done in R, the latest techniques are usually available first in the R system.
  • R was first created by Ross Ihaka and Robert Gentleman at the University of Auckland in 1993, and since then the project leadership has grown to include more than 20 leading statisticians and computer scientists from around the world. In addition, thousands of others have contributed additional functionality to the R language by creating add-on "packages" for use by the 2 million users of R worldwide.
diigo lemon

Cómo solucionar los retos del Big Data | InformationWeek México - 0 views

  • Para los programadores que trabajan con Big Data, el lenguaje R tiene dos ventajas primordiales, a decir de Smith: “Está diseñado para trabajar con datos y para construir modelos con datos”. Los programadores, añadió, pueden pasar de un concepto a un modelo funcional en una fracción del tiempo que toma con sistemas heredados.
  • La segunda ventaja es el diseño de código abierto del lenguaje R. “Tiene una comunidad completa de estadísticos y científicos de datos quienes realmente extienden los límites del acceso a datos, de plataformas de datos como Hadoop, de técnicas de análisis de datos y también de la visualización de datos, que es una parte cada vez más importante de la historia
    • julianc1c
       
      Big Data también atraerá una oleada de demanda de habilidades de análisis alrededor de modelado predictivo, minería de datos, procesamiento de lenguaje natural, análisis de contenido, análisis de redes sociales y análisis de los sentimientos. Esto ya está llevando a maximizar la oferta de Big Data con "R" para el análisis avanzado de predicción y estadística".
  • ...2 more annotations...
    • juan trinidad jimenez armesto
       
      Manejando cantidades de datos tan grandes, se utiliza el lenguaje de programación R porque se ha creado para manejar datos y trabajarlos y las empresas de aprobechan de ello. El problema es que se puede llegar a manejar muchos más datos de los que piensan.
    • diigo lemon
       
      Las aplicaciones de Big Data almacenan grandes cantidades de datos sin estructurar, y esto presenta problemas a la hora de la búsqueda y el análisis de estos. El lenguaje R permite trabajar con muchos datos, aunque estén sin estructurar, y crea modelos de predicción. Es un lenguaje diseñado por científicos y que se puede ampliar para poder ir realizando más acciones (por lo que el lenguaje crece). Este lenguaje permite extraer información útil de dentro de grandes bases de datos para su posterior análisis, para extraer resultados.
  •  
    big data r
  •  
    Ventajas del lenguaje R para los programadores que trabajan con big data
Sébastien Sanchez

R, the Software, Finds Fans in Data Analysts - NYTimes.com - 0 views

  • While it is difficult to calculate exactly how many people use R, those most familiar with the software estimate that close to 250,000 people work with it regularly.
    • corozo56
       
      Actualmente el número de usuarios esta creciendo exponencialmente.
  • “R is a real demonstration of the power of collaboration, and I don’t think you could construct something like this any other way,” Mr. Ihaka said. “We could have chosen to be commercial, and we would have sold five copies of the software.”
  • Data Analysts Captivated by R’s Power
    • corozo56
       
      Este artículo del NYTimes explica el origen y la utilidad del lenguaje de programacion en R.
  • ...12 more annotations...
    • Sébastien Sanchez
       
      Artículo en NYTimes que habla de la creciente implantación del lenguaje de programación R en el ámbito empresarial. Explica como cada vez más, grandes empresas como Google empiezan a emplear este lenguaje de programación para todo tipo de propósitos (investigación comercial, data mining…).
  • Open-source software is free for anyone to use and modify
  • an improve
  • R is similar to other programming languages
  • R is particularly useful because it contains a number of built-in mechanisms for organizing data, running calculations on the information and creating graphical representations of data sets.
  • For statisticians
  • R is also the name of a popular programming language used by a growing number of data analysts inside corporations and academia
  • statisticians, engineers and scientists can improve the software’s code or write variations for specific tasks
  • software’s
  • Packages written for R add advanced algorithms, colored and textured graphs and mining techniques to dig deeper into databases
  • While it is difficult to calculate exactly how many people use R, those most familiar with the software estimate that close to 250,000 people work with it regularly
  • “R is a real demonstration of the power of collaboration, and I don’t think you could construct something like this any other way,” Mr. Ihaka said. “We could have chosen to be commercial, and we would have sold five copies of the software.”
Juanjo Cristian

R, the Software, Finds Fans in Data Analysts - NYTimes.com - 0 views

  • R describe it  as a supercharged version of  Microsoft’s Excel
  • R describe it  as a supercharged version of Microsoft’s Excel
  • R describe it  as a supercharged version of Microsoft’s Excel
  • ...26 more annotations...
  • R describe it  as a supercharged version of  Microsoft’s Excel
  • R describe it  as a supercharged version of
  • R describe it  as a supercharged version of  Microsoft’s Excel
  • R describe it  as a supercharged version of  Microsoft’s Excel
  • R describe it  as a supercharged version of  Microsoft’s Excel
  • is particularly useful because it contains a number of built-in mechanisms for organizing data, running calculations on the information and creating graphical representations of data sets.
  • familiar
  • familiar
  • It allows statisticians to do very intricate and complicated analyses without knowing the blood and guts of computing systems.”
  • It is also free.
  • R is an open-source program, and its popularity reflects a shift in the type of software used inside corporations
  • R is similar to other programming languages, like C, Java and Perl, in that it helps people perform a wide variety of computing tasks by giving them access to various commands.
  • R describe it  as a supercharged version of Microsoft’s Excel
  • Excel
  • Microsoft’s
  • version
  • supercharged
  • Some people familiar with R describe it
  • familiar
  • R first appeared in 1996, when the statistics professors Ross Ihaka and Robert Gentleman of the University of Auckland in New Zealand released the code as a free software package.
  • The popularity of R at universities could threaten SAS Institute, the privately held business software company that specializes in data analysis software. SAS, with more than $2 billion in annual revenue, has been the preferred tool of scholars and corporate managers.
  • Google, for example, taps R for help understanding trends in ad pricing and for illuminating patterns in the search data it collects.
  • Pfizer has created customized packages for R to let its scientists manipulate their own data during nonclinical drug studies rather than send the information off to a statistician.
  • Mr. Gentleman is applying R-based software, called Bioconductor, in work he is doing on computational biology at the Fred Hutchinson Cancer Research Center in Seattle.
    • Sébastien Sanchez
       
      Artículo en NYTimes que habla de la creciente implantación del lenguaje de programación R en el ámbito empresarial. Explica como cada vez más, grandes empresas como Google empiezan a emplear este lenguaje de programación para todo tipo de propósitos (investigación comercial, data mining…).
    • Juanjo Cristian
       
      El lenguaje de programación R ha cautivado a gran parte de los analistas de datos debido a su potencial en el ámbito de la estadística especialmente. También es usado por grandes empresas como Google o Bank of America y por estadistas y científicos.
  •  
    Se trata de un artículo del New York Times en el que describe la historia del lenguaje y diferentes empresas que lo utilizan y los usos que le dan, como Google y Pfizer.
teleco teleco

R Programming/Importing and exporting data - Wikibooks, open books for an open world - 0 views

  • Data can be stored in a large variety of formats. Each statistical package has its own format for data (xls for Microsoft Excel, dta for Stata, sas7bdat for SAS, ...). R can read almost all file formats. We present a method for each kind of file. If none of the following methods work, you can use a specific software for data conversion such as the free software OpenRefine or the commercial software Stat Transfer[1]. In any case, most statistical software can export data in a CSV (comma separated values) format and all of them can read CSV data. This is often the best solution to make data available to everyone.
    • teleco teleco
       
      Este lenguaje es muy completo ya que nos permite importar y exportar datos desde diversas aplicaciones del ordenador
Enrique Diaz Romero

An Introduction to R - 1 views

    • nerub val
       
      las carateristicas generales de R
    • nerub val
       
      El desarrollo de R
  • R is an integrated suite of software facilities for data manipulation, calculation and graphical display. Among other things it has an effective data handling and storage facility, a suite of operators for calculations on arrays, in particular matrices, a large, coherent, integrated collection of intermediate tools for data analysis, graphical facilities for data analysis and display either directly at the computer or on hardcopy, and a well developed, simple and effective programming language (called ‘S’) which includes conditionals, loops, user defined recursive functions and input and output facilities. (Indeed most of the system supplied functions are themselves written in the S language.)
    • Enrique Diaz Romero
       
      El entorno de R entre otras cosas nos permite el uso y almacenamiento eficaz de datos, así como su análisis en forma de matrices, un gran numero de herramientas graficas y un lenguaje claro y sencillo de programación en el que podemos encontrar un gran numero de funciones.
  • ...4 more annotations...
  • his section presumes the reader has some familiarity with statistical methodology, in particular with regression analysis and the analysis of variance. Later we make some rather more ambitious presumptions, namely that something is known about generalized linear models and nonlinear regression. The requirements for fitting statistical models are sufficiently well defined to make it possible to construct general tools that apply in a broad spectrum of problems. R provides an interlocking suite of facilities that make fitting statistical models very simple. As we mention in the introduction, the basic output is minimal, and one needs to ask for the details by calling extractor functions.
  • When you use the R program it issues a prompt when it expects input commands. The default prompt is ‘>’, which on UNIX might be the same as the shell prompt, and so it may appear that nothing is happening. However, as we shall see, it is easy to change to a different R prompt if you wish. We will assume that the UNIX shell prompt is ‘$’.
  • R can be regarded as an implementation of the S language which was developed at Bell Laboratories by Rick Becker, John Chambers and Allan Wilks, and also forms the basis of the S-Plus systems. The evolution of the S language is characterized by four books by John Chambers and coauthors. For R, the basic reference is The New S Language: A Programming Environment for Data Analysis and Graphics by Richard A. Becker, John M. Chambers and Allan R. Wilks. The new features of the 1991 release of S are covered in Statistical Models in S edited by John M. Chambers and Trevor J. Hastie. The formal methods and classes of the methods package are based on those described in Programming with Data by John M. Chambers. See References, for precise references. There are now a number of books which describe how to use R for data analysis and statistics, and documentation for S/S-Plus can typically be used with R, keeping the differences between the S implementations in mind. See What documentation exists for R?.
  • R (“GNU S”), a language and environment for statistical computing and graphics. R is similar to the award-winning1 S system, which was developed at Bell Laboratories by John Chambers et al. It provides a wide variety of statistical and graphical techniques
    • Enrique Diaz Romero
       
      ¿Que es R y de donde viene? R nos lo presentan como un lenguaje y entorno que desciende del reconocido sistema S desarrollado por los laboratorios Bell, y que nos ofrece una serie de técnicas u herramientas para el análisis estadístico y gráfico
  •  
    Introducción completa al lenguaje R de programación para análisis de datos estadísticos.
practica5 empresas

What is Open Source R - 0 views

    • Javier Soriano
       
      R es un lenguaje de programación diseñado expresamente para el análisis de datos. R hace que sea fácil extraer conclusiones a partir de datos multidimensionales con tablas de paneles múltiples, superficies 3-D, etc.
    • Javier Soriano
       
      R es utilizado en el campo de la ciencia y de las finanzas. Dentro del campo de la ciencia lo podemos encontrar en Análisis de imágenes médicas, estadísticas generales,..., entre otras. Por el contrario, en finanzas, lo encontramos en econometría, análisis financieros, etc.
  • Create beautiful and unique data visualizations Representing complex data with charts and graphs is an essential part of the data analysis process, and R goes far beyond the traditional bar chart and line plot. Heavily influenced by thought leaders in data visualization like Bill Cleveland and Edward Tufte, R makes it easy to draw meaning from multidimensional data with multi-panel charts, 3-D surfaces and more. The custom charting capabilities of R are featured in many of the stunning infographics seen in the New York Times, The Economist, and the FlowingData blog.
  • ...2 more annotations...
    • practica5 empresas
       
      Esta pagina remarca que R es un software libre que se emplea en compilaciones matematicas para analizar ficheros.
  • Draw on the talents of data scientists worldwide As a thriving open-source project, R is supported by a community of more than 2 million users and thousands of developers worldwide. Whether you’re using R to optimize portfolios, analyze genomic sequences, or to predict component failure times, experts in every domain have made resources, applications and code available for free, online.
Joca Vijo

Big Data Right Now: Five Trendy Open Source Technologies | TechCrunch - 0 views

    • Joca Vijo
       
      Aquí nos remarca que el lenguaje R es muy adecuado a la hora de desarrollar proyectos de 'Big Data', o con contenidos ingentes de información, separando y analizando las diversas publicaciones.
  • Because it has an unusually strong community around it, you can find R libraries for almost anything under the sun — making virtually any kind of data science capability accessible without new code. R is exciting because of who is working on it, and how much net-new innovation is happening on a daily basis. the R community is one of the most thrilling places to be in Big Data right now. R is a also wonderful way to future-proof your Big Data program. In the last few months, literally thousands of new features have been introduced, replete with publicly available knowledge bases for every analysis type you’d want to do as an organization.
LuCla EdPa

What is R? (Oracle R Enterprise) - 0 views

  • R has been receiving a lot of attention recently, although it’s been around for over 15 years. R is an open-source language and environment for statistical computing and data visualization, supporting data manipulation and transformations, as well as sophisticated graphical displays
    • LuCla EdPa
       
      R es un lenguaje de código abierto, que admite ser manipulado por la comunidad
  • Corporate data analysts and statisticians often know R and use it in their daily work, either writing their own R functionality,
    • LuCla EdPa
       
      Es usado por corporaciones y empresas
  • It’s a powerful, extensible environment, and as noted above, it has a wide range of statistics and data visualization capabilities. It’s easy to install and use, and it’s free
  • ...4 more annotations...
  • n contrast, statisticians and data analysts typically don’t know SQL and are not familiar with database tasks. R provides statisticians and data analysts access a wide range of analytical capabilities in a natural statistical language
  • However, there is another issue that limits R’s scalability…
  • R is limited by the memory and processing power of the machine where it runs
  • this chews up memory faster.
    • LuCla EdPa
       
      Pese a ser un potente programa, parece ser que no administra demasiado bien los recursos
juan trinidad jimenez armesto

R, the Software, Finds Fans in Data Analysts - NYTimes.com - 0 views

    • juan trinidad jimenez armesto
       
      Debido al aumento estos últimos años de la necesidad del data mining por el gran número de datos que manejas las empresas y la posibilidad de buscar patrones comunes, las grandes empresas empezaron a utilizar R como herramienta para ello.
    • juan trinidad jimenez armesto
       
      Además R es de código libre, como también lo son Apache o la bases de datos MySQL, haciendo que el proyecto se desarolle en comunidades de usuarios.
    • juan trinidad jimenez armesto
       
      Existen numerosos paquetes con funciones predefinidas por otros usuarios para facilitar la programación
  • ...11 more annotations...
  • Many people view the end results of all this technology via the Firefox Web browser, also open-source software.
  • R is also the name of a popular programming language used by a growing number of data analysts inside corporations and academia. It is becoming their lingua franca partly because data mining has entered a golden age
  • Companies as diverse as Google, Pfizer, Merck, Bank of America, the InterContinental Hotels Group and Shell use it.
  • R has also quickly found a following because statisticians, engineers and scientists without computer programming skills find it easy to use.
  • Many people view the end results of all this technology via the Firefox Web browser, also open-source software.
  • Most Web sites are displayed using an open-source application called Apache, and companies increasingly rely on the open-source MySQL database to store their critical information. Many people view the end results of all this technology via the Firefox Web browser, also open-source software.
  • For statisticians
  • R is particularly useful because it contains a number of built-in mechanisms for organizing data, running calculations on the information and creating graphical representations of data sets.
  • What makes R so useful
  • is that statisticians, engineers and scientists can improve the software’s code or write variations for specific tasks. Packages written for R add advanced algorithms, colored and textured graphs and mining techniques to dig deeper into databases.
  • The financial services community has demonstrated a particular affinity for R; dozens of packages exist for derivatives analysis alone.
Alexis Agustín

Data mining. ¿Cómo extraer la máxima información de Twitter? | Rizomática - 0 views

  • posibilidad de poder extraer la información no trivial que subyace en ese flujo continuo que está generando más de 170 de millones de tuits cada día.
  • Hoy, Twitter es una red de microblogging que permite conocer lo que se habla y lo que interesa a la gente.
  • para realizar esta minería de datos (Data mining), he empezado a utilizar el lenguaje de programación R, un software libre para análisis estadístico y gráfico muy popular en las tareas de investigación de la comunidad científica en campos tan punteros como la biomedicina y la bioinformática
  • ...15 more annotations...
  • Para extraer la información de Twitter, el entorno de programación del lenguaje R suministra extensiones o paquetes, como twitteR que permite, entre otras opciones, extraer tuits públicos
  • Una vez que hemos obtenido los datos en bruto, es decir, la colección de tuits que cumplen unas determinadas condiciones, con el lenguaje R y las funciones especializadas podemos trasladar las informaciones de los tuits en tablas normalizadas que nos permitirán realizar una exploración analítica de los datos y su representación gráfica
  • el lenguaje R también nos aporta potentes herramientas para empezar a pulir los 140 caracteres con el objetivo de localizar información que nos permita conocer sobre que temas se está hablando,
  • Asimismo, tenemos la posibilidad de realizar análisis, en el texto del tuit, de actitudes positivas o negativas hacia un determinado acontecimiento, producto o servicio.
  • Esto último, denominado análisis de los sentimientos o minería de opinión,
  • es un área de investigación que persigue poder identificar y extraer información subjetiva de textos y documentos, algo nada fácil considerando la ambigüedad que puede conllevar el lenguaje natural y el contexto cultural particular de cada persona.
    • Alexis Agustín
       
      Este articulo que al parecer todos hemos encontrado, hace un analisis de como usa R para extraer la mineria de datos de twitter con un programa expecifico programado en dicho lenguaje y representa datos claves sobre los usuarios que serian utiles para aplicarlos en el departamento de marketing.
    • Joca Vijo
       
      Es decir, 'R' no sólo recopila información de diversas fuentes (como Twitter), sino que además puede analizar esa información y recopilarla en conjuntos de datos.
  • al margen de los datos estructurados que podemos extraer: usuario, conexiones con otros usuarios, fecha y hora de publicación
  • con el lenguaje R y las funciones especializadas podemos trasladar las informaciones
  • Una vez que hemos obtenido los datos en bruto
  • en tablas normalizadas que nos permitirán realizar una exploración analítica de los datos y su representación gráfica
  • el aspecto más interesante es poder extraer información significativa del propio texto
  • Asimismo, tenemos la posibilidad de realizar análisis, en el texto
  • , de actitudes positivas o negativas hacia un determinado acontecimiento, producto o servicio
  • Una vez que hemos obtenido los datos en bruto, es decir, la colección de tuits que cumplen unas determinadas condiciones, con el lenguaje R y las funciones especializadas podemos trasladar las informaciones de los tuits en tablas normalizadas que nos permitirán realizar una exploración analítica de los datos y su representación gráfica
  •  
    R en data mining
  •  
    R en data mining
Alexis Agustín

See how Deloitte uses R for actuarial analysis - 0 views

    • Alexis Agustín
       
      Aqui un consultor de Deloitte nos muestra como usa R para explorar datos y ajustarlos en distribuciones, calculando proyecciones usando la regresion de Poisson. Ademas lo contrapone a Excel, concluyendo que no hay una hoja de calculo en la que confundir columnas, si no que en lineas de codigo simple que se puede copiar se puede trabajar mas facilmente con grandes cantidades de datos
  • Jim Guszcza (Predictive Analytics lead at Deloitte Consulting and Assistant Professor at UW-Madison) who gave a great webinar presentation yesterday
  • R is used for exploratory data analysis and modeling, with a live examples of fitting a mixute distribution to bimodal claims data, and calculating loss reserves using Poisson regression.
  • ...2 more annotations...
  • Just one simple line of [R] code that would work just as well for a 100-by-100 loss triangle as it would for a 10-by-10 triangle. No hidden cells in the spreadsheet, no risk of spreadsheet error. It's a little bit of code you could look at in one screen, it's replicable ... and this does all the work that a spreadsheet would do. 
  • He uses the Allstate Claim Prediction Challenge data (from a recent Kaggle competition) to fit a Tweedie model to 13 million records of claim data. (The Tweedie distribution is often used to model insurance claims, where many claims are exactly zero, and non-zero claims follow a continuous Gamma-like distribution.) Using the forthcoming rxGLM function, he fit the model to this large data set in just over two minutes (140.22 seconds) using a single quad-core PC.
La morsa Peluda

Manual R commander - 0 views

  •  
    Tutorial sobre el uso del R Commander, con capturas de pantalla
Antonio Legaz

Adding power to data mining with R - 0 views

    • Antonio Legaz
       
      El lenguaje R supone una alternativa para las empresas que no tienen los medios o el capital suficiente para contratar expertos en minería de datos. Es un lenguaje relativamente sencillo además de ser software libre,en otras palabras, gratis.
  •  
    Pequeña descripción del lenguaje R y su enfoque hacia el "data mining" en los negocios.
viinjo A1c

Revolution Analytics Rides R Language into Mainstream Business | - 0 views

    • diigo lemon
       
      Revolution Analytics es un proveedor comercial de software y servicios relacionados con el lenguaje R. Es un lenguaje de programación basado en estadística que tiene muchos usuarios. Las empresas están recogiendo enormes cantidades de datos, pero a menudo no pueden analizar los mismos debido a problemas de escala. Revolution Analytics ayuda a afrontar estos problemas mediante un nuevo enfoque. "Revolution R" proporciona velocidad y escala en el análisis de grandes datos.
  • Revolution Analytics provides value by taking the most recent release from the R community and adding scalability and other functionality so that R can be implemented and seamlessly work in a commercial environment. Revolution R provides a development environment so that data scientists can write and debug R code more effectively, and web service APIs that integrate with other BI tools and dashboards so that R can work with business intelligence tools and visual discovery tools. In addition, Revolution Analytics makes money through professional and support services.
    • viinjo A1c
       
      Miestra como una empresa puede ofrecer un servicio basado en R como producto.
  • For example, IBM’s PureData System for Analytics (IBM’s new name for its MPP Netezza appliance) uses the in-database approach with an R instance running on each processing unit in the database, each of which is connected to an R server via ODBC. The analytics are invoked as the data is served up to the processor such that the algorithms run in parallel across all of the data.
    • viinjo A1c
       
      Ejemplo de uso del lenguaje R en servidores de IBM
  • ...1 more annotation...
  • I’ve heard that Revolution R isn’t always the easiest software to use and that the experience isn’t exactly seamless, but it can be argued that in the cutting-edge field of big data analytics a challenging environment is to be expected. If Revolution Analytics can address some of these useability challenges, it may find its pie growing even faster than it is now. Regardless, I anticipate that Revolution Analytics will continue its fast growth (already its headcount is doubling year-over-year). Furthermore, I anticipate that in-database analytics (an area where R really shines) will become the de-facto approach to big data analytics and that companies that take full advantage of that trend will reap benefits.
    • viinjo A1c
       
      Predice un buen futuro para el lenguaje R, así que todo y que sea un entorno difícil es algo que se puede esperar en el análisis de grandes volúmenes.
  •  
    FALTA TERMINARLO!!
LaRuPu upv

Data Mining Applications with R - RDataMining.com: R and Data Mining - 0 views

shared by LaRuPu upv on 01 May 13 - No Cached
  • Data ExplorationDecision Treesk-means ClusteringHierarchical ClusteringOutlier DetectionTime Series AnalysisTime Series Clustering and ClassificationAssociation RulesText MiningSocial Network AnalysisParallel ComputingOther Examples
  •  
    Uso aplicado de aplicaciones Data mining en R para el análisis de datos.
LaRuPu upv

Bioconductor - About - 0 views

  • Project Goals The broad goals of the Bioconductor project are: To provide widespread access to a broad range of powerful statistical and graphical methods for the analysis of genomic data. To facilitate the inclusion of biological metadata in the analysis of genomic data, e.g. literature data from PubMed, annotation data from Entrez genes. To provide a common software platform that enables the rapid development and deployment of extensible, scalable, and interoperable software. To further scientific understanding by producing high-quality documentation and reproducible research. To train researchers on computational and statistical methods for the analysis of genomic data
  •  
    Uso de R en el campo de la bio estadística (análisis de datos sobre el genoma)
julianc1c

GMK: Data Mining - Entornos visuales de programacion para R. - 0 views

  •  
    programas para data mining
nerub val

R FAQ - 0 views

  • The “Comprehensive R Archive Network” (CRAN) is a collection of sites which carry identical material, consisting of the R distribution(s), the contributed extensions, documentation for R, and binaries
  • he CRAN master site at TU Wien, Austria, can be found at the URL http://cran.R-project.org/ Daily mirrors are available at URLs including
  • R is a system for statistical computation and graphics
  • ...27 more annotations...
  • s very similar in appearance to S, the underlying implementation and semantics are derived from Scheme
  • antics are derive
  • mantics are derived
  • It is possible for the user to interface to procedures written in the C, C++, or FORTRAN languages for efficiency.
  • R was initially written by Ross Ihaka and Robert Gentleman
  • Since mid-1997 there has been a core group (the “R Core Team”) who can modify the R source code archive. The group currently consists of Doug Bates, John Chambers, Peter Dalgaard, Robert Gentleman, Kurt Hornik, Stefano Iacus, Ross Ihaka, Friedrich Leisch, Thomas Lumley, Martin Maechler, Duncan Murdoch, Paul Murrell, Martyn Plummer, Brian Ripley, Duncan Temple Lang, Luke Tierney, and Simon Urbanek.
  • R is being developed for the Unix, Windows and Mac
    • nerub val
       
      funciona en mac windows y unix
    • nerub val
       
      creadores del lenguaje c
    • nerub val
       
      colaboradores en el desarrollo asta 1997
  • Sources, binaries and documentation for R can be obtained via CRAN, the “Comprehensive R Archive Network” (see What is CRAN?)
  • How can R be installed (Macintosh) Next: How can R be installed (Windows), Previous: How can R be installed?, Up: How can R be installed?
    • nerub val
       
      como instalarlo en linux windows y mac
  • Printed copies of the R reference manual for some version(s) are available from Network Theory Ltd, at http://www.network-theory.co.uk/R/base/. For each set of manuals sold, the publisher donates USD 10 to the R Foundation (see What is the R Foundation?).
    • nerub val
       
      manual de referencia de r
    • nerub val
       
      publicado en papel
  • The R distribution also comes with the following manuals. “An Introduction to R” (R-intro) includes information on data types, programming elements, statistical modeling and graphics. This document is based on the “Notes on S-Plus” by Bill Venables and David Smith. “Writing R Extensions” (R-exts) currently describes the process of creating R add-on packages, writing R documentation, R's system and foreign language interfaces, and the R API. “R Data Import/Export” (R-data) is a guide to importing and exporting data to and from R. “The R Language Definition” (R-lang), a first version of the “Kernighan & Ritchie of R”, explains evaluation, parsing, object oriented programming, computing on the language, and so forth. “R Installation and Administration” (R-admin).
    • nerub val
       
      servidores desde conde descargar diferentes paquetes de r
  • It is the opinion of the R Core Team that one can use R for commercial purposes (e.g., in business or in consulting). The GPL, like all Open Source licenses, permits all and any use of the package. It only restricts distribution of R or of other programs containing code from R. This is made clear in clause 6 (“No Discrimination Against Fields of Endeavor”) of the Open Source Definition:
    • nerub val
       
      r es de libre uso, solo esta restringida su distrubucion.
  • The name is partly based on the (first) names of the first two R authors (Robert Gentleman and Ross Ihaka),
    • nerub val
       
      razon del nombre
  • 3.3.1 Lexical scoping
    • nerub val
       
      a partir de aqui hay especificaciones tecnicas del lexico de r
  • Web Interfaces
    • nerub val
       
      proyectos relacionados con r
  • 5.1 Which add-on packages exist for R?
    • nerub val
       
      a partir de aqui estan muchos de los paquetes y que contienen para r.
1 - 20 of 76 Next › Last »
Showing 20 items per page