Papers of Paul Erdos - 0 views
Roth's theorem on progressions revisited - 0 views
-
Roth’s theorem on progressions revisited
中国科学软件网 - Scientific WorkPlace V 5.5 - 0 views
On the sign changes of coefficients of general Dirichlet series - 0 views
-
Abstract: Under what conditions do the (possibly complex) coefficients of a general Dirichlet series exhibit oscillatory behavior? In this work we invoke Laguerre's Rule of Signs and Landau's Theorem to provide a rather simple answer to this question. Furthermore, we explain how our result easily applies to a multitude of functions.
The Large Sieve and its Applications - Cambridge University Press - 0 views
-
Among the modern methods used to study prime numbers, the ‘sieve’ has been one of the most efficient. Originally conceived by Linnik in 1941, the ‘large sieve’ has developed extensively since the 1960s, with a recent realisation that the underlying principles were capable of applications going well beyond prime number theory. This book develops a general form of sieve inequality, and describes its varied applications, including the study of families of zeta functions of algebraic curves over finite fields; arithmetic properties of characteristic polynomials of random unimodular matrices; homological properties of random 3-manifolds; and the average number of primes dividing the denominators of rational points on elliptic curves. Also covered in detail are the tools of harmonic analysis used to implement the forms of the large sieve inequality, including the Riemann Hypothesis over finite fields, and Property (T) or Property (tau) for discrete groups.• Explores new and surprising applications of the large sieve method, an important technique of analytic number theory • Presents applications in fields as wide ranging as topology, probability, arithmetic geometry and discrete group theory • Motivated, clear and self-contained discussions introduce readers to a technique previously confined to one fieldContentsPreface; Prerequisites and notation; 1. Introduction; 2. The principle of the large sieve; 3. Group and conjugacy sieves; 4. Elementary and classical examples; 5. Degrees of representations of finite groups; 6. Probabilistic sieves; 7. Sieving in discrete groups; 8. Sieving for Frobenius over finite fields; Appendix A. Small sieves; Appendix B. Local density computations over finite fields; Appendix C. Representation theory; Appendix D. Property (T) and Property (τ); Appendix E. Linear algebraic groups; Appendix F. Probability theory and random walks; Appendix G. Sums of multiplicative functions; Appendix H. Topology; Bibliography; Index.
E. Kowalski's blog » Averages of singular series, or: when Poisson is everywhere - 0 views
-
I have recently posted on my web page a preprint concerning some averages of “singular series” (another example of pretty bad mathematical terminology…) arising in the prime k-tuple conjecture, and its generalization the Bateman-Horn conjecture. The reason for looking at this is a result of Gallagher which is important in the original version of the proof by Goldston-Pintz-Yildirim that there are infinitely many primes p for which the gap q-p between p and the next prime q is smaller than ε times the average gap, for arbitrary small ε>0.
SpringerLink - Journal Article - 0 views
-
Abstract The pointwise ergodic theorem is proved for prime powers for functions inL p,p>1. This extends a result of Bourgain where he proved a similar theorem forp>(1+√3)/2.
Sarnak: Equidistribution and Primes - 0 views
Goldston & Yildirim - 0 views
The Riemann Hypothesis - 0 views
Harmonic Analysis on Finite Groups - Cambridge University Press - 0 views
-
ContentsPart I. Preliminaries, Examples and Motivations: 1. Finite Markov chains; 2. Two basic examples on Abelian groups; Part II. Representation Theory and Gelfand Pairs: 3. Basic representation theory of finite groups; 4. Finite Gelfand pairs; 5. Distance regular graphs and the Hamming scheme; 6. The Johnson Scheme and the Laplace-Bernoulli diffusion model; 7. The ultrametric space; Part III. Advanced theory: 8. Posets and the q−analogs; 9. Complements on representation theory; 10. Basic representation theory of the symmetric group; 11. The Gelfand Pair (S2n, S2 o Sn) and random matchings; Appendix 1. The discrete trigonometric transforms; Appendix 2. Solutions of the exercises; Bibliography; Index.
Grothendieck Circle - 0 views
PrinceComp.pdf (application/pdf 对象) - 0 views
[math/0606087] Quadratic Uniformity of the Mobius Function - 0 views
-
Quadratic Uniformity of the Mobius Function Authors: Ben Green, Terence Tao (Submitted on 4 Jun 2006 (v1), last revised 22 Sep 2007 (this version, v2)) Abstract: This paper is a part of our programme to generalise the Hardy-Littlewood method to handle systems of linear questions in primes. This programme is laid out in our paper Linear Equations in Primes [LEP], which accompanies this submission. In particular, the results of this paper may be used, together with the machinery of [LEP], to establish an asymptotic for the number of four-term progressions p_1 < p_2 < p_3 < p_4 <= N of primes, and more generally any problem counting prime points inside a ``non-degenerate'' affine lattice of codimension at most 2. The main result of this paper is a proof of the Mobius and Nilsequences Conjecture for 1 and 2-step nilsequences. This conjecture is introduced in [LEP] and amounts to showing that if G/\Gamma is an s-step nilmanifold, s <= 2, if F : G/\Gamma -> [-1,1] is a Lipschitz function, and if T_g : G/\Gamma -> G/\Gamma is the action of g \in G on G/\Gamma, then the Mobius function \mu(n) is orthogonal to the sequence F(T_g^n x) in a fairly strong sense, uniformly in g and x in G/\Gamma. This can be viewed as a ``quadratic'' generalisation of an exponential sum estimate of Davenport, and is proven by the following the methods of Vinogradov and Vaughan.
« First
‹ Previous
101 - 120 of 214
Next ›
Last »
Showing 20▼ items per page