Skip to main content

Home/ ErgodicPNT/ Group items tagged featured

Rss Feed Group items tagged

arithwsun arithwsun

科学网-告别邹承鲁先生 - 0 views

  •  
    所谓"邹承鲁与诺贝尔奖两度擦肩而过"之真相 解 华 波 按:文*革结束不久,我国政府接受杨振宁曾"两度"提过的建议,经中科院研究后推举钮经义作为"中国人工合成牛胰岛素研究"项目的诺贝尔奖候选人。20年后,钮经义已逝,而当年参与该项目的邹承鲁却借"反伪打假"一举成名,很快被采访记者炒成"与诺贝尔奖擦肩而过";不久,又被爆炒为"两度擦肩而过"。知情者不免诧异:候选人都不是,何谈"擦肩"?又何来"两度"?有好奇者追根寻底后不禁拍案叫绝--原来,所谓"两度擦肩"竟是一场精心策划的造神闹剧。 * * * * * 不知何故,曾康慨激昂地宣称"不能靠媒体炒作搞诺贝尔奖"并以此为借口玩弄政*治手腕将张颖清的《全息生物学》打成伪科学的邹承鲁院士,却一直对媒体哄炒他本人"与诺贝尔奖擦肩而过"的喧哗之声装聋作哑。2003年夏,主流媒体"央视国际"专访邹承鲁,再把一轮爆炒推向了新高潮并达到了惊人的高度--"两度与诺贝尔奖擦肩而过"(见搜狐网科学频道:《邹承鲁:一个与诺贝尔奖两度擦肩而过的人》)。事实真相到底如何呢? 40年前,为显示伟大的社会主义中国在"科技战线"的能力,我国倾全国之生化研究力量组织了一个 "人工合成牛胰岛素试验"研究项目。众多科技人员参与了该项目,骨干就有十余位,分成几个小组,分别承担不同的任务,邹承鲁只是其中拆合组的组长。历尽艰难的最后阶段工作--人工A链与人工B链的全合成实验是由杜雨苍为主完成的。在当时的条件下,我国能搞出该项成果实属不易。为此,热心肠的美籍物理学家杨振宁分别于文*革期间和文*革后两度向我国政府建议为该项目申请诺贝尔奖。文*革期间
arithwsun arithwsun

科学网-中国学者在科研上的合作:要经费还是要和合作? - 0 views

  • 这里,简单说几句关于中国人合作中的钱和感情的问题。
arithwsun arithwsun

AIM math: GL(3) Maass forms and L-functions - 0 views

  • wo researchers from the University of Bristol exhibited the first example of a third degree transcendental L-function.
  • "This work was made possible by a combination of theoretical advances and the power of modern computers." During his lecture, Bian reported that it took approximately 10,000 hours of computer time to produce his initial results.
arithwsun arithwsun

One L of a discovery - 0 views

  • A new mathematical object, an elusive cousin of the Riemann zeta-function, was revealed to great acclaim recently at the American Institute of Mathematics. Ce Bian and Andrew Booker from the University of Bristol showed the first example of a third degree transcendental L-function.
  • Functional equations shed light on the properties of those functions that satisfy them, and for L-functions F(s) the functional equation is:   where q is an integer called the level, d is the degree, and the numbers  are Langland's parameters. is an analytic continuation of the factorial function  that is valid not only for integers but all complex numbers. There are two types of L-functions: algebraic and transcendental. These are classified according to their degree. If the Langland's parameters are rational or algebraic (that is, are complex numbers that are roots of non-zero polynomials with rational coefficients), then the L-function is algebraic. If these numbers are transcendental (that is, non-algebraic, such as  or  , then the L-function is transcendental. The Riemann zeta-function is the L-function where the level is 1, the degree is 1 and the Langland's parameters are 0 — that is, a first degree algebraic L-function. The Bristol researchers showed the first example of a third degree transcendental L-function.
arithwsun arithwsun

科学网-SCI投稿常用英语 - 0 views

  •  
    1. Dear Dr. Defendi ML: I am sending a manuscript entitled "" by - which I should like to submit for possible publication in the journal of - . Yours sincerely 2. Dear Dr. A: Enclosed is a manuscript entitled "" by sb, which we are submitting for publication in the journal of - . We have chosen this journal because it deals with - . We believe that sth would be of interest to the journal's readers. 3. Dear Dr. A: Please find enclosed for your review an original research article, "" by sb. All authors have read and approve this version of the article, and due care has been taken to ensure the integrity of the work. No part of this paper has published or submitted elsewhere. No conflict of interest exits in the submission of this manuscript, and we have attached to this letter the signed letter granting us permission to use Figure 1 from another source. We appreciate your consideration of our manuscript, and we look forward to receiving comments from the reviewers. 二、询问有无收到稿件 Dear Editors, We dispatched our manuscript to your journal on 3 August 2006 but have not, as yet, receive acknowledgement of their safe arrival. We fear that may have been lost and should be grateful if you would let us know whether or not you have received them. If not, we will send our manuscript again. Thank you in advance for your help. 三、询问论文审查回音 Dear Editors, It is more than 12 weeks since I submitted our manuscript (No: ) for possible publication in your journal. I have not yet received a reply and am wondering whether you have reached a decision. I should appreciated your letting me know what you have decided as soon as possible. 四、关于论文的总体审查意见 1. This is a carefully done study and the findings are of considerable interest. A few minor revision are list below. 2. This is a well-written paper containing interesting results which merit publication. For the benefit of the reader, however, a numb
arithwsun arithwsun

谷歌金山词霸合作版 - 0 views

  • 谷歌金山词霸合作版   软件介绍     《谷歌金山词霸合作版》是金山与谷歌面向互联网翻译市场联合开发,适用于个人用户的免费翻译软件。软件支持中、日、英三语查询,有取词、查词、查句、全文翻译、网页翻译等功能。 软件特点 经典准确:传承金山词霸十年内容品质,收录《现代英汉综合大词典》、《汉英词典》(新)等经典词典,涵盖金山词霸百万余词条。 网络词典:《爱词霸百科词典》和海量的《Google网络词典》,囊括所有新词,流行词,内容紧跟时代。 实用例句:80万情景例句,直接输入句子或关键字就可以找到所有相关联的句型和用法,举一反三使您学到更多。 时尚轻巧:下载快,启动快,有效节省系统资源。使用快捷方便,占用空间小。人性化操作界面,外形时尚。 智能翻译:使用领先的网络引擎,在丰富语料库基础上结合强大的翻译技术,使得全文翻译结果智能准确。 网页直译:支持网页翻译,您可以直接输入网址并选择语种,快速实时地显示翻译结果。 多语互译:中英日繁4种语言七个方向!支持英汉、汉英、英英、汉汉、汉日、日汉查词,以及中、英、日、繁四种语言7个方向翻译。 纯正发音:30万纯正真人发音,含英语中5万长词、难词和词组,帮您纠正英文单词发音。 屏幕取词:领先的屏幕词取技术,新增译中译功能,可选任意的单词或词组,支持Windows Vista操作系统,并支持PDF文档格式取词。 轻松学习:查词或学习时将生词归纳入生词本,以悬浮窗口的形式方便您随时背单词。每日新鲜的网络学习内容让您和爱词霸百万会员分享共进!
arithwsun arithwsun

The Large Sieve and its Applications - Cambridge University Press - 0 views

  • Among the modern methods used to study prime numbers, the ‘sieve’ has been one of the most efficient. Originally conceived by Linnik in 1941, the ‘large sieve’ has developed extensively since the 1960s, with a recent realisation that the underlying principles were capable of applications going well beyond prime number theory. This book develops a general form of sieve inequality, and describes its varied applications, including the study of families of zeta functions of algebraic curves over finite fields; arithmetic properties of characteristic polynomials of random unimodular matrices; homological properties of random 3-manifolds; and the average number of primes dividing the denominators of rational points on elliptic curves. Also covered in detail are the tools of harmonic analysis used to implement the forms of the large sieve inequality, including the Riemann Hypothesis over finite fields, and Property (T) or Property (tau) for discrete groups.• Explores new and surprising applications of the large sieve method, an important technique of analytic number theory • Presents applications in fields as wide ranging as topology, probability, arithmetic geometry and discrete group theory • Motivated, clear and self-contained discussions introduce readers to a technique previously confined to one fieldContentsPreface; Prerequisites and notation; 1. Introduction; 2. The principle of the large sieve; 3. Group and conjugacy sieves; 4. Elementary and classical examples; 5. Degrees of representations of finite groups; 6. Probabilistic sieves; 7. Sieving in discrete groups; 8. Sieving for Frobenius over finite fields; Appendix A. Small sieves; Appendix B. Local density computations over finite fields; Appendix C. Representation theory; Appendix D. Property (T) and Property (τ); Appendix E. Linear algebraic groups; Appendix F. Probability theory and random walks; Appendix G. Sums of multiplicative functions; Appendix H. Topology; Bibliography; Index.
arithwsun arithwsun

E. Kowalski's blog » Averages of singular series, or: when Poisson is everywhere - 0 views

  • I have recently posted on my web page a preprint concerning some averages of “singular series” (another example of pretty bad mathematical terminology…) arising in the prime k-tuple conjecture, and its generalization the Bateman-Horn conjecture. The reason for looking at this is a result of Gallagher which is important in the original version of the proof by Goldston-Pintz-Yildirim that there are infinitely many primes p for which the gap q-p between p and the next prime q is smaller than ε times the average gap, for arbitrary small ε>0.
arithwsun arithwsun

Lie groups - 0 views

  • Hall, Brian C. Lie groups, Lie algebras, and representations. An elementary introduction. Graduate Texts in Mathematics, 222. Springer-Verlag, New York, 2003. This is only a recommended text, but it is highly recommended. By emphasizing matrix groups, the book covers most of the important examples occuring in nature while avoiding a lot of the technical difficulties necessary in a more general treatment. It gives an excellent presentation of most of what we'll talk about. I think it will be a great book to read to supplement the lectures. Looking around on the web, I found many copies that were very reasonably priced.
  • Humphreys, James E. Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, 9. Springer-Verlag, New York-Berlin, 1978. A classic. Would have been my choice for a textbook, but unfortunately only covers Lie algebras.
  • Fulton, William; Harris, Joe. Representation theory. A first course. Graduate Texts in Mathematics, 129. Readings in Mathematics. Springer-Verlag, New York, 1991. A beautiful book to read. Very useful for self-study. Bump, Daniel. Lie groups. Graduate Texts in Mathematics, 225. Springer-Verlag, New York, 2004. Perhaps too hard for beginners, but it contains an excellent collection of topics in the final part.
  • ...3 more annotations...
  • Varadarajan, V. S. Lie groups, Lie algebras, and their representations. Graduate Texts in Mathematics, 102. Springer-Verlag, New York, 1984. Another classic. Very comprehensive. Representation theory of Lie groups. Proceedings of the SRC/LMS Research Symposium held in Oxford, June 28--July 15, 1977. Edited by G. L. Luke. London Mathematical Society Lecture Note Series, 34. Cambridge University Press, Cambridge-New York, 1979. See especially the articles by Macdonald and Bott.
  • Onishchik, A. L.; Vinberg, E. B. Lie groups and algebraic groups. Translated by D. A. Leites. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1990. Written with a more algebraic flavor. Takes the unusual approach of omitting almost all proofs and presenting the material as a series of exercies. (This is not as crazy as it sounds. In fact it's a very pleasant read.)
  • Knapp, Anthony W. Lie groups beyond an introduction. Second edition. Progress in Mathematics, 140. Birkhauser Boston, Inc., Boston, MA, 2002. Contains a lot of material with complete proofs. Thorough, but difficult to read if this is your first exposure. Springer, T. A. Linear algebraic groups. Second edition. Progress in Mathematics, 9. Birkhauser Boston, Inc., Boston, MA, 1998. Sure, it's a textbook on algebraic groups, but there's plenty of relevance for the study of Lie groups. Freudenthal, Hans; de Vries, H. Linear Lie groups. Pure and Applied Mathematics, Vol. 35 Academic Press, New York-London 1969. Bizarre and fascinating.
arithwsun arithwsun

[math/0610021] The principle of the large sieve - 0 views

  • We describe a very general abstract form of sieve based on a large sieve inequality which generalizes both the classical sieve inequality of Montgomery (and its higher-dimensional variants), and our recent sieve for Frobenius over function fields. The general framework suggests new applications. We get some first results on the number of prime divisors of ``most'' elements of an elliptic divisibility sequence, and we develop in some detail ``probabilistic'' sieves for random walks on arithmetic groups, e.g., estimating the probability of finding a reducible characteristic polynomial at some step of a random walk on SL(n,Z). In addition to the sieve principle, the applications depend on bounds for a large sieve constant. To prove such bounds involves a variety of deep results, including Property (T) or expanding properties of Cayley graphs, and the Riemann Hypothesis over finite fields. It seems likely that this sieve can have further applications.
arithwsun arithwsun

Structure and randomness in the prime numbers « What's new - 0 views

  • 2 July, 2008 at 6:28 pm Terence Tao It unfortunately seems that the decomposition claimed in equation (6.9) on page 20 of that paper is, in fact, impossible; it would endow the function h (which is holding the arithmetical information about the primes) with an extremely strong dilation symmetry which it does not actually obey. It seems that the author was relying on this symmetry to make the adelic Fourier transform far more powerful than it really ought to be for this problem.
  • 3 July, 2008 at 3:41 am Gergely Harcos I also have some (perhaps milder) troubles with the proof. It seems to me as if Li had treated the Dirac delta on L^2(A) as a function. For example, the first 5 lines of page 28 make little sense to me. Am I missing something here?
  • 4 July, 2008 at 5:15 am Lior Silberman The function defined on page 20 does have a strong dilation symmetry: it is invariant by multiplication by ideles of norm one (since it is merely a function of the norm of ). In particular, it is invariant under multiplication by elements of . I’m probably missing something here. Probably the subtlety is in passing from integration over the nice space of idele classes to the singular space . The topologies on the spaces of adeles and ideles are quite different. There is a formal error in Theorem 3.1 which doesn’t affect the paper: the distribution discussed is not unique. A distribution supported at a point is a sum of derivatives of the delta distribution. Clearly there exist many such with a given special value of the Fourier transform. There is also something odd about this paper: nowhere is it pointed out what is the new contribution of the paper. Specifically, what is the new insight about number theory?
  • ...12 more annotations...
  • 4 July, 2008 at 6:09 am Emmanuel Kowalski A remark concerning Lior’s remark: the function h(u) in the current (v4) version of the paper is _not_ the same as the one that was defined when T. Tao pointed out a problem with it. This earlier one (still visible on arXiv, v1) was defined in different ways depending on whether the idele had at most one or more than one non-unit component, and was therefore not invariant under multiplication by . (It is another problem with looking at such a paper if corrections as drastic as that are made without any indication of when and why).
  • 4 July, 2008 at 8:15 am Terence Tao Dear Lior, Emmanuel is correct. The old definition of h was in fact problematic for a large number of reasons (the author was routinely integrating h on the idele class group C, which is only well-defined if h was -invariant). Changing the definition does indeed fix the problem I pointed out (and a number of other issues too). But Connes has pointed out a much more serious issue, in the proof of the trace formula in Theorem 7.3 (which is the heart of the matter, and is what should be focused on in any future revision): the author is trying to use adelic integration to control a function (namely, h) supported on the ideles, which cannot work as the ideles have measure zero in the adeles. (The first concrete error here arises in the equation after (7.13): the author has made a change of variables on the idele class group C that only makes sense when u is an idele, but u is being integrated over the adeles instead. All subsequent manipulations involving the adelic Fourier transform Hh of h are also highly suspect, since h is zero almost everywhere on the adeles.)
  • More generally, there is a philosophical objection as to why a purely multiplicative adelic approach such as this one cannot work. The argument only uses the multiplicative structure of , but not the additive structure of k. (For instance, the fact that k is a cocompact discrete additive subgroup of A is not used.) Because of this, the arguments would still hold if we simply deleted a finite number of finite places v from the adeles (and from ). If the arguments worked, this would mean that the Weil-Bombieri positivity criterion (Theorem 3.2 in the paper) would continue to hold even after deleting an arbitrary number of places. But I am pretty sure one can cook up a function g which (assuming RH) fails this massively stronger positivity property (basically, one needs to take g to be a well chosen slowly varying function with broad support, so that the Mellin transforms at Riemann zeroes, as well as the pole at 1 and the place at infinity, are negligible but which gives a bad contribution to a single large prime (and many good contributions to other primes which we delete).)
  • Emmanuel Kowalski That’s an interesting point indeed, if one considers that the RH doesn’t work over function fields once we take out a point of a (smooth projective) curve — there arise zeros of the zeta function which are not on the critical line.
  • 6 July, 2008 at 5:28 pm Chip Neville Terence, I have a question about your comment: “Because of this, the arguments would still hold if we simply deleted a finite number of finite places v from the adeles (and from k^*). … (basically, one needs to take g to be a well chosen slowly varying function with broad support, so that the Mellin transforms at Riemann zeroes, as well as the pole at 1 and the place at infinity, are negligible but which gives a bad contribution to a single large prime (and many good contributions to other primes which we delete).)” Does this mean that you would be considering the “reduced” (for lack of a better name) zeta function \prod 1/(1-1/p^{-s}), where the product is taken over the set of primes not in a finite subset S? If so, this “reduced” zeta function has the same zeroes as the standard Riemann zeta function, since the finite product \prod_S 1/(1-1/p^{-s}) is an entire function with no zeroes in the complex plane. Thus the classical situation in the complex plane seems to be very different in this regard from the situation with function fields over smooth projective curves alluded to by Emmanuel above. Does anyone have an example of an infinite set S and corresponding reduced zeta function with zeroes in the half plane Re z > 1/2? A set S of primes p so that \sum_S 1/p^{1/2} converges will not do, since \prod_S 1/(1-1/p^{-s}) is holomorphic in the half plane Re z > 1/2 with no zeroes there. Perhaps a set S of primes P thick enough so that \sum_S 1/p^{1/2} diverges, but thin enough so that \sum_S 1/p converges, might do. This seems to me to be a delicate and difficult matter. I hope these questions do not sound too foolish.
  • 6 July, 2008 at 7:44 pm Terence Tao Dear Chip, Actually, the product has a number of poles on the line , when s is a multiple of . Li’s approach to the RH was not to tackle it directly, but instead to establish the Weil-Bombieri positivity condition which is known to be equivalent to RH. However, the proof of that equivalence implicitly uses the functional equation for the zeta function (via the explicit formula). If one starts deleting places (i.e. primes) from the problem, the RH stays intact (at least on the half-plane ), but the positivity condition does not, because the functional equation has been distorted.
  • The functional equation, incidentally, is perhaps the one non-trivial way we do know how to exploit the additive structure of k inside the adeles, indeed I believe this equation can be obtained from the Poisson summation formula for the adeles relative to k. But it seems that the functional equation alone is not enough to yield the RH; some other way of exploiting additive structure is also needed, but I have no idea what it should be. [Revised, July 7:] Looking back at Li’s paper, I see now that Poisson summation was indeed used quite a few times, and in actually a rather essential way, so my previous philosophical objection does not actually apply here. My revised opinion is now that, beyond the issues with the trace formula that caused the paper to be withdrawn, there is another fundamental problem with the paper, which is that the author is in fact implicitly assuming the Riemann hypothesis in order to justify some facts about the operator E (which one can think of as a sort of Mellin transform multiplier with symbol equal to the zeta function, related to the operator on ). More precisely, on page 18, the author establishes that and asserts that this implies that , but this requires certain invertibility properties of E which fail if there is a zero off of the critical line. (A related problem is that the decomposition used immediately afterwards is not justified, because is merely dense in rather than equal to it.)
  • 7 July, 2008 at 9:59 am javier Dear Terence, I am not sure I understand your “philosophical” complain on using only the multiplicative structure and not the additive one. This is essentially the philosophy while working over the (so over-hyped lately) field with one element, which apparently comes into the game in the description of the Connes-Bost system on the latest Connes-Consani-Marcolli paper (Fun with F_un). From an algebraic point of view, you can often recover the additive structure of a ring from the multiplicative one provided that you fix the zero. There is an explanation of this fact (using the language of monads) in the (also famous lately) work by Nikolai Durov “A new approach to Arakelov geometry (Section 4.8, on additivity on algebraic monads). By the way, I wanted to tell you that I think you are doing an impressive work with this blog and that I really enjoy learning from it, even if this is the very first time I’ve got something sensible to say :-)
  • 7 July, 2008 at 11:01 am Terence Tao Dear Javier, I must confess I do not understand the field with one element much at all (beyond the formal device of setting q to 1 in any formula derived using and seeing what one gets), and don’t have anything intelligent to say on that topic. Regarding my philosophical objection, the point was that if one deleted some places from the adele ring A and the multiplicative group (e.g. if k was the rationals, one could delete the place 2 by replacing with the group of non-zero rationals with odd numerator and denominator) then one would still get a perfectly good “adele” ring in place of A, and a perfectly good multiplicative group in place of (which would be the invertible elements in the ring of rationals with odd denominator), but somehow the arithmetic aspects of the adeles have been distorted in the process (in particular, Poisson summation and the functional equation get affected). The Riemann hypothesis doesn’t seem to extend to this general setting, so that suggests that if one wants to use adeles to prove RH, one has to somehow exploit the fact that one has all places present, and not just a subset of such places. Now, Poisson summation does exploit this very fact, and so technically this means that my objection does not apply to Li’s paper, but I feel that Poisson summation is not sufficient by itself for this task (just as the functional equation is insufficient to resolve RH), and some further exploitation of additive (or field-theoretic) structure of k should be needed. I don’t have a precise formalisation of this feeling, though.
  • 7 July, 2008 at 1:22 pm Gergely Harcos Dear Terry, you are absolutely right that Poisson summation over k inside A is the (now) standard way to obtain the functional equation for Hecke L-functions. This proof is due to Tate (his thesis from 1950), you can also find it in Weil’s Basic Number Theory, Chapter 7, Section 5.
  • 15 July, 2008 at 7:57 am michele I think that the paper of Prof. Xian-Jin Li will be very useful for a future and definitive proof of the Riemann hypothesis. Furthermore, many mathematics contents of this paper can be applied for further progress in varios sectors of theoretical physics (p-adic and adelic strings, zeta strings).
  • Babak Hi Terrance, A few months ago I stumbled upon an interesting differential equation while using probability heuristics to explore the distribution of primes. It’s probably nothing, but on the off-chance that it might mean something to a better trained mind, I decided to blog about it: http://babaksjournal.blogspot.com/2008/07/differential-equation-estimating.html -Babak
arithwsun arithwsun

[0807.1736] The Mobius and Nilsequences Conjecture - 0 views

  • We show that the Mobius function mu(n) is strongly asymptotically orthogonal to any polynomial nilsequence n -> F(g(n)L). Here, G is a simply-connected nilpotent Lie group with a discrete and cocompact subgroup L (so G/L is a nilmanifold), g : Z -> G is a polynomial sequence and F: G/L -> R is a Lipschitz function. More precisely, we show that the inner product of mu(n) with F(g(n)L) over {1,...,N} is bounded by 1/log^A N, for all A > 0. In particular, this implies the Mobius and Nilsequence conjecture MN(s) from our earlier paper ``Linear equations in primes'' for every positive integer s. This is one of two major ingredients in our programme, outlined in that paper, to establish a large number of cases of the generalised Hardy-Littlewood conjecture, which predicts how often a collection \psi_1,...,\psi_t : Z^d -> Z of linear forms all take prime values. The proof is a relatively quick application of the results in our recent companion paper on the distribution of polynomial orbits on nilmanifolds. We give some applications of our main theorem. We show, for example, that the Mobius function is uncorrelated with any bracket polynomial. We also obtain a result about the distribution of nilsequences n -> a^nxL as n ranges only over the primes.
arithwsun arithwsun

The Möbius and nilsequences conjecture « What's new - 0 views

  • There is an amusing way to interpret the conjecture (using the close relationship between nilsequences and bracket polynomials) as an assertion of the pseudorandomness of the Liouville function from a computational complexity perspective.   
1 - 20 of 35 Next ›
Showing 20 items per page