Skip to main content

Home/ ErgodicPNT/ Group items tagged video

Rss Feed Group items tagged

arithwsun arithwsun

From Arithmetic Progressions to Nilpotent Groups; A Chapter in Contemporary Ergodic The... - 0 views

  •  
    Tenth Karl Stromberg Memorial Lecture, Hillel (Harry) Furstenberg
arithwsun arithwsun

A few combinatorial problems in harmonic analysis (MSRI online video) - 0 views

  •  
    Laba, Izabella
arithwsun arithwsun

Nilpotent groups and non-conventional ergodic theorems (online video) - 0 views

  •  
    Hillel Furstenberg
arithwsun arithwsun

Non-conventional Ergodic Averages (online video) - 0 views

  •  
    Bryna Kra
arithwsun arithwsun

Science News Online: Ivars Peterson's MathTrek (6/26/99): The Return of Zeta - 0 views

  • References: Cipra, B. 1998. A prime case of chaos. In What's Happening in the Mathematical Sciences, Vol. 4. Providence, R.I.: American Mathematical Society. (Available at http://www.ams.org/new-in-math/happening.html.) ______. 1996. Prime formula weds number theory and quantum physics. Science 274(Dec. 20):2014. Davis, P.J., and R. Hersch. 1981. The Mathematical Experience. New York: Viking Penguin. Katz, N.M., and P. Sarnak. 1999. Zeroes of zeta functions and symmetry. Bulletin of the American Mathematical Society 36(January):1. Peterson, I. 1995. Cavities of chaos. Science News 147(April 29):264. Richards, I. 1978. Number theory. In Mathematics Today: Twelve Informal Essays. L.A. Steen, ed. New York: Springer-Verlag. Peter Sarnak's lecture on random matrix models in number theory and quantum mechanics is available at http://www.msri.org/publications/video/fall98/mandm.html. Andrew Odlyzko's Web page at http://www.research.att.com/~amo/ features computations of the zeros of the zeta function.
  • The Riemann hypothesis was first proposed in 1859 by the German mathematician Georg Friedrich Bernhard Riemann (1826-1866). It concerns the so-called zeta function, which encodes a great deal of information about the seemingly haphazard distribution of prime numbers among the integers (see The Mark of Zeta, June 19, 1999).
1 - 7 of 7
Showing 20 items per page