Skip to main content

Home/ ErgodicPNT/ Group items tagged long

Rss Feed Group items tagged

arithwsun arithwsun

Szemeredi's theorem - 30 views

http://in-theory.blogspot.com/2006_05_28_archive.html in theory Saturday, June 03, 2006 Szemeredi's theorem Szemeredi's theorem on arithmetic progressions is one of the great triumphs of the "Hung...

szemeredi

started by arithwsun arithwsun on 03 Sep 07 no follow-up yet
Ke Gong

The primes contain aribtrarily long arithmetic progressions - 0 views

  •  
    The primes contain aribtrarily long arithmetic progressions
arithwsun arithwsun

Topics in Harmonic Analysis and Ergodic Theory - Blackwell Online - 0 views

  • Topics in Harmonic Analysis and Ergodic Theory Joseph M. Rosenblatt, Alexander M. Stokolos, Ahmed I. Zayed ISBN: 0821842358 Paperback American Mathematical Society Usually despatched within 3 to 9 days
  • There are strong connections between harmonic analysis and ergodic theory. A recent example of this interaction is the proof of the spectacular result by Terence Tao and Ben Green that the set of prime numbers contains arbitrarily long arithmetic progressions. The breakthrough achieved by Tao and Green is attributed to applications of techniques from ergodic theory and harmonic analysis to problems in number theory.Articles in the present volume are based on talks delivered by plenary speakers at a conference on Harmonic Analysis and Ergodic Theory (DePaul University, Chicago, December 2-4, 2005). Of ten articles, four are devoted to ergodic theory and six to harmonic analysis, although some may fall in either category. The articles are grouped in two parts arranged by topics. Among the topics are ergodic averages, central limit theorems for random walks, Borel foliations, ergodic theory and low pass filters, data fitting using smooth surfaces, Nehari's theorem for a polydisk, uniqueness theorems for multi-dimensional trigonometric series, and Bellman and s-functions.In addition to articles on current research topics in harmonic analysis and ergodic theory, this book contains survey articles on convergence problems in ergodic theory and uniqueness problems on multi-dimensional trigonometric series.
arithwsun arithwsun

[math/0703749] Arithmetic structures in random sets - 0 views

  • We extend two well-known results in additive number theory, S\'ark\"ozy's theorem on square differences in dense sets and a theorem of Green on long arithmetic progressions in sumsets, to subsets of random sets of asymptotic density 0. Our proofs rely on a restriction-type Fourier analytic argument of Green and Green-Tao.
arithwsun arithwsun

math.NT/0610050: The primes contain arbitrarily long polynomial progressions - 0 views

  •  
    it is reasonable to conjecture that an analogous result to Theorem 1.3 also holds in higher dimensions.This is however still open even in the linear case, the key difficulty being that the tensor product of pseudorandom measures is not pseudorandom.
1 - 7 of 7
Showing 20 items per page