Skip to main content

Home/ ErgodicPNT/ Group items tagged large-sieve

Rss Feed Group items tagged

arithwsun arithwsun

The Large Sieve and its Applications - Cambridge University Press - 0 views

  • Among the modern methods used to study prime numbers, the ‘sieve’ has been one of the most efficient. Originally conceived by Linnik in 1941, the ‘large sieve’ has developed extensively since the 1960s, with a recent realisation that the underlying principles were capable of applications going well beyond prime number theory. This book develops a general form of sieve inequality, and describes its varied applications, including the study of families of zeta functions of algebraic curves over finite fields; arithmetic properties of characteristic polynomials of random unimodular matrices; homological properties of random 3-manifolds; and the average number of primes dividing the denominators of rational points on elliptic curves. Also covered in detail are the tools of harmonic analysis used to implement the forms of the large sieve inequality, including the Riemann Hypothesis over finite fields, and Property (T) or Property (tau) for discrete groups.• Explores new and surprising applications of the large sieve method, an important technique of analytic number theory • Presents applications in fields as wide ranging as topology, probability, arithmetic geometry and discrete group theory • Motivated, clear and self-contained discussions introduce readers to a technique previously confined to one fieldContentsPreface; Prerequisites and notation; 1. Introduction; 2. The principle of the large sieve; 3. Group and conjugacy sieves; 4. Elementary and classical examples; 5. Degrees of representations of finite groups; 6. Probabilistic sieves; 7. Sieving in discrete groups; 8. Sieving for Frobenius over finite fields; Appendix A. Small sieves; Appendix B. Local density computations over finite fields; Appendix C. Representation theory; Appendix D. Property (T) and Property (τ); Appendix E. Linear algebraic groups; Appendix F. Probability theory and random walks; Appendix G. Sums of multiplicative functions; Appendix H. Topology; Bibliography; Index.
arithwsun arithwsun

[math/0610021] The principle of the large sieve - 0 views

  • We describe a very general abstract form of sieve based on a large sieve inequality which generalizes both the classical sieve inequality of Montgomery (and its higher-dimensional variants), and our recent sieve for Frobenius over function fields. The general framework suggests new applications. We get some first results on the number of prime divisors of ``most'' elements of an elliptic divisibility sequence, and we develop in some detail ``probabilistic'' sieves for random walks on arithmetic groups, e.g., estimating the probability of finding a reducible characteristic polynomial at some step of a random walk on SL(n,Z). In addition to the sieve principle, the applications depend on bounds for a large sieve constant. To prove such bounds involves a variety of deep results, including Property (T) or expanding properties of Cayley graphs, and the Riemann Hypothesis over finite fields. It seems likely that this sieve can have further applications.
arithwsun arithwsun

[0812.2222] The Large Sieve and Galois Representations - 0 views

  • We describe a generalization of the large sieve to situations where the underlying groups are nonabelian, and give several applications to the arithmetic of abelian varieties. In our applications, we sieve the set of primes via the system of representations arising from the Galois action on the torsion points of an abelian variety. The resulting upper bounds require explicit character sum calculations, with stronger results holding if one assumes the Generalized Riemann Hypothesis.
arithwsun arithwsun

Notes and unpublished papers of Emmanuel Kowalski - 0 views

  • An alternate argument for the arithmetic large sieve inequality September 2008 This short note describes a very natural and well-motivated derivation of the "arithmetic" large sieve inequality from the dual of the analytic inequality, which avoids the usual trick of submultiplicativity of Gallagher. This is also described in a blog post.
arithwsun arithwsun

E. Kowalski's blog › Modular signs: story of a workaround - 0 views

  • This earlier problem is of considerable importance in algorithmic number theory, and both have been excellent testing and breeding grounds for various important techniques, notably (and this is close to my heart…) leading to the invention and development of the first “large sieve” method by Linnik.
1 - 5 of 5
Showing 20 items per page