Skip to main content

Home/ ErgodicPNT/ Group items tagged theorem

Rss Feed Group items tagged

arithwsun arithwsun

Szemeredi's theorem - 30 views

http://in-theory.blogspot.com/2006_05_28_archive.html in theory Saturday, June 03, 2006 Szemeredi's theorem Szemeredi's theorem on arithmetic progressions is one of the great triumphs of the "Hung...

szemeredi

started by arithwsun arithwsun on 03 Sep 07 no follow-up yet
arithwsun arithwsun

Conference update, part II « The Accidental Mathematician - 0 views

  • In the second lecture (based on Gowers’s joint work with Julia Wolf) we were introduced to decomposition theorems. A decomposition theorem for the norm can be stated as follows: if is a function (on either or ) with , there is a decomposition , where are “generalized quadratic phase functions” and are error terms with and small. This can be deduced from the inverse theorem of Green-Tao; in fact a similar statement was already implicit in their work, based on the energy increment argument. Tim presented a different approach to deducing decomposition theorems from inverse theorems, based on functional-analytic arguments involving the geometry of normed spaces (specifically, a variant of the Hahn-Banach theorem).
  • This can be applied to the question of counting solutions to systems of linear equations in sets. Let’s say that we are interested in finding sensible conditions under which a set will have the “statistically correct” number of solutions to a system of linear equations. For instance, if it is 4-term arithmetic progressions that we are concerned with, then uniformity is sufficient (and, in general, necessary). Green and Tao prove a more general result of this type: they define the complexity of a system of linear forms, and prove that systems of complexity are controlled by norms.
  • Gowers and Wolf, however, do not stop there. Suppose that, instead of 4-term progressions, we are interested in configurations of the form, say, . The complexity of this system in the sense of Green-Tao is 2, hence a set uniform in the norm will contain the “right” number of such configurations. Gowers and Wolf, however, can prove that uniformity already guarantees the same conclusion! The difference between the two examples? The squares are linearly dependent, whereas are not. Gowers and Wolf prove that such “square independence” is in fact both sufficient and necessary for a system of complexity 2 to be controlled by the $U^2$ norm. The proof is based on the decomposition theorem described earlier.
arithwsun arithwsun

Math 251A - 0 views

  • MATH 254A : Topics in Ergodic Theory Course description: Basic ergodic theorems (pointwise, mean, maximal) and recurrence theorems (Poincare, Khintchine, etc.)  Topological dynamics.  Structural theory of measure-preserving systems; characteristic factors.  Spectral theory of dynamical systems.  Multiple recurrence theorems (Furstenberg, etc.) and connections with additive combinatorics (e.g. Szemerédi’s theorem).  Orbits in homogeneous spaces, especially nilmanifolds; Ratner’s theorem.  Further topics as time allows may include joinings, dynamical entropy, return times theorems, arithmetic progressions in primes, and/or
  •         Instructor: Terence Tao, tao@math.ucla.edu, x64844, MS 6183
arithwsun arithwsun

Milliman Lecture I: Additive combinatorics and the primes « What's new - 0 views

  • However, it turns out that if one of the sets, say A, is sufficiently “uniform” or “pseudorandom”, then one can always solve this Goldbach-type problem, regardless of what the other two sets are. This type of fact is often established by Fourier-analytic means (or by closely related techniques, such as spectral theory), but let me give a heuristic combinatorial argument to indicate why one would expect this type of phenomenon to occur.
  • quares Primes Lagrange’s four square theorem: For every positive integer N, there exists a pattern in of the form . Vinogradov’s theorem: For every sufficiently large integer N, there exists a pattern in of the form . Fermat’s two square theorem: For every prime number , there exists a pattern in of the form . Even Goldbach conjecture: For every even number , there exists a pattern in of the form . Fermat’s four square theorem: There does not exist any pattern in of the form with . Green-Tao theorem: For any , there exist infinitely many patterns in of the form with . Pell’s equation: There are infinitely many patterns in of the form . Sophie Germain conjecture: There are infinitely many patterns in of the form .
Ke Gong

Roth's theorem on progressions revisited - 0 views

  • Roth’s theorem on progressions revisited
  •  
    Roth's theorem on progressions revisited
arithwsun arithwsun

talks.cam : A new norm related to the Gowers U^3 norm - 0 views

  • A new norm related to the Gowers U^3 norm Add to your list(s) Download to your calendar using vCal Pablo Candela Pokorna Monday 16 February 2009, 16:00-17:00 MR12, CMS, Wilberforce Road, Cambridge, CB3 0WB. If you have a question about this talk, please contact Anton Evseev. The uniformity norms (or U^d norms, for d>1 a positive integer) were introduced about ten years ago by Gowers in his effective proof of Szemerédi’s theorem, and have played an important role in arithmetic combinatorics ever since. The U^2 norm is naturally related to Fourier analysis, and a very active trend in current research aims to develop an analogue of Fourier analysis for each U^d norm with d>2. The body of results of this research for d=3 is known as quadratic Fourier analysis. After an introduction to this area we will consider a new norm related to the U^3 norm, and discuss some of its applications in quadratic Fourier analysis, including a strengthening of a central theorem of Green and Tao (the inverse theorem for the U^3 norm), and how this stronger version of the theorem can be used to give a new proof of a recent decomposition-theorem of Gowers and Wolf. This talk is part of the Junior Algebra/Combinatorics/Number Theory seminar series.
arithwsun arithwsun

Structure and randomness in the prime numbers « What's new - 0 views

  • 2 July, 2008 at 6:28 pm Terence Tao It unfortunately seems that the decomposition claimed in equation (6.9) on page 20 of that paper is, in fact, impossible; it would endow the function h (which is holding the arithmetical information about the primes) with an extremely strong dilation symmetry which it does not actually obey. It seems that the author was relying on this symmetry to make the adelic Fourier transform far more powerful than it really ought to be for this problem.
  • 3 July, 2008 at 3:41 am Gergely Harcos I also have some (perhaps milder) troubles with the proof. It seems to me as if Li had treated the Dirac delta on L^2(A) as a function. For example, the first 5 lines of page 28 make little sense to me. Am I missing something here?
  • 4 July, 2008 at 5:15 am Lior Silberman The function defined on page 20 does have a strong dilation symmetry: it is invariant by multiplication by ideles of norm one (since it is merely a function of the norm of ). In particular, it is invariant under multiplication by elements of . I’m probably missing something here. Probably the subtlety is in passing from integration over the nice space of idele classes to the singular space . The topologies on the spaces of adeles and ideles are quite different. There is a formal error in Theorem 3.1 which doesn’t affect the paper: the distribution discussed is not unique. A distribution supported at a point is a sum of derivatives of the delta distribution. Clearly there exist many such with a given special value of the Fourier transform. There is also something odd about this paper: nowhere is it pointed out what is the new contribution of the paper. Specifically, what is the new insight about number theory?
  • ...12 more annotations...
  • 4 July, 2008 at 6:09 am Emmanuel Kowalski A remark concerning Lior’s remark: the function h(u) in the current (v4) version of the paper is _not_ the same as the one that was defined when T. Tao pointed out a problem with it. This earlier one (still visible on arXiv, v1) was defined in different ways depending on whether the idele had at most one or more than one non-unit component, and was therefore not invariant under multiplication by . (It is another problem with looking at such a paper if corrections as drastic as that are made without any indication of when and why).
  • 4 July, 2008 at 8:15 am Terence Tao Dear Lior, Emmanuel is correct. The old definition of h was in fact problematic for a large number of reasons (the author was routinely integrating h on the idele class group C, which is only well-defined if h was -invariant). Changing the definition does indeed fix the problem I pointed out (and a number of other issues too). But Connes has pointed out a much more serious issue, in the proof of the trace formula in Theorem 7.3 (which is the heart of the matter, and is what should be focused on in any future revision): the author is trying to use adelic integration to control a function (namely, h) supported on the ideles, which cannot work as the ideles have measure zero in the adeles. (The first concrete error here arises in the equation after (7.13): the author has made a change of variables on the idele class group C that only makes sense when u is an idele, but u is being integrated over the adeles instead. All subsequent manipulations involving the adelic Fourier transform Hh of h are also highly suspect, since h is zero almost everywhere on the adeles.)
  • More generally, there is a philosophical objection as to why a purely multiplicative adelic approach such as this one cannot work. The argument only uses the multiplicative structure of , but not the additive structure of k. (For instance, the fact that k is a cocompact discrete additive subgroup of A is not used.) Because of this, the arguments would still hold if we simply deleted a finite number of finite places v from the adeles (and from ). If the arguments worked, this would mean that the Weil-Bombieri positivity criterion (Theorem 3.2 in the paper) would continue to hold even after deleting an arbitrary number of places. But I am pretty sure one can cook up a function g which (assuming RH) fails this massively stronger positivity property (basically, one needs to take g to be a well chosen slowly varying function with broad support, so that the Mellin transforms at Riemann zeroes, as well as the pole at 1 and the place at infinity, are negligible but which gives a bad contribution to a single large prime (and many good contributions to other primes which we delete).)
  • Emmanuel Kowalski That’s an interesting point indeed, if one considers that the RH doesn’t work over function fields once we take out a point of a (smooth projective) curve — there arise zeros of the zeta function which are not on the critical line.
  • 6 July, 2008 at 5:28 pm Chip Neville Terence, I have a question about your comment: “Because of this, the arguments would still hold if we simply deleted a finite number of finite places v from the adeles (and from k^*). … (basically, one needs to take g to be a well chosen slowly varying function with broad support, so that the Mellin transforms at Riemann zeroes, as well as the pole at 1 and the place at infinity, are negligible but which gives a bad contribution to a single large prime (and many good contributions to other primes which we delete).)” Does this mean that you would be considering the “reduced” (for lack of a better name) zeta function \prod 1/(1-1/p^{-s}), where the product is taken over the set of primes not in a finite subset S? If so, this “reduced” zeta function has the same zeroes as the standard Riemann zeta function, since the finite product \prod_S 1/(1-1/p^{-s}) is an entire function with no zeroes in the complex plane. Thus the classical situation in the complex plane seems to be very different in this regard from the situation with function fields over smooth projective curves alluded to by Emmanuel above. Does anyone have an example of an infinite set S and corresponding reduced zeta function with zeroes in the half plane Re z > 1/2? A set S of primes p so that \sum_S 1/p^{1/2} converges will not do, since \prod_S 1/(1-1/p^{-s}) is holomorphic in the half plane Re z > 1/2 with no zeroes there. Perhaps a set S of primes P thick enough so that \sum_S 1/p^{1/2} diverges, but thin enough so that \sum_S 1/p converges, might do. This seems to me to be a delicate and difficult matter. I hope these questions do not sound too foolish.
  • 6 July, 2008 at 7:44 pm Terence Tao Dear Chip, Actually, the product has a number of poles on the line , when s is a multiple of . Li’s approach to the RH was not to tackle it directly, but instead to establish the Weil-Bombieri positivity condition which is known to be equivalent to RH. However, the proof of that equivalence implicitly uses the functional equation for the zeta function (via the explicit formula). If one starts deleting places (i.e. primes) from the problem, the RH stays intact (at least on the half-plane ), but the positivity condition does not, because the functional equation has been distorted.
  • The functional equation, incidentally, is perhaps the one non-trivial way we do know how to exploit the additive structure of k inside the adeles, indeed I believe this equation can be obtained from the Poisson summation formula for the adeles relative to k. But it seems that the functional equation alone is not enough to yield the RH; some other way of exploiting additive structure is also needed, but I have no idea what it should be. [Revised, July 7:] Looking back at Li’s paper, I see now that Poisson summation was indeed used quite a few times, and in actually a rather essential way, so my previous philosophical objection does not actually apply here. My revised opinion is now that, beyond the issues with the trace formula that caused the paper to be withdrawn, there is another fundamental problem with the paper, which is that the author is in fact implicitly assuming the Riemann hypothesis in order to justify some facts about the operator E (which one can think of as a sort of Mellin transform multiplier with symbol equal to the zeta function, related to the operator on ). More precisely, on page 18, the author establishes that and asserts that this implies that , but this requires certain invertibility properties of E which fail if there is a zero off of the critical line. (A related problem is that the decomposition used immediately afterwards is not justified, because is merely dense in rather than equal to it.)
  • 7 July, 2008 at 9:59 am javier Dear Terence, I am not sure I understand your “philosophical” complain on using only the multiplicative structure and not the additive one. This is essentially the philosophy while working over the (so over-hyped lately) field with one element, which apparently comes into the game in the description of the Connes-Bost system on the latest Connes-Consani-Marcolli paper (Fun with F_un). From an algebraic point of view, you can often recover the additive structure of a ring from the multiplicative one provided that you fix the zero. There is an explanation of this fact (using the language of monads) in the (also famous lately) work by Nikolai Durov “A new approach to Arakelov geometry (Section 4.8, on additivity on algebraic monads). By the way, I wanted to tell you that I think you are doing an impressive work with this blog and that I really enjoy learning from it, even if this is the very first time I’ve got something sensible to say :-)
  • 7 July, 2008 at 11:01 am Terence Tao Dear Javier, I must confess I do not understand the field with one element much at all (beyond the formal device of setting q to 1 in any formula derived using and seeing what one gets), and don’t have anything intelligent to say on that topic. Regarding my philosophical objection, the point was that if one deleted some places from the adele ring A and the multiplicative group (e.g. if k was the rationals, one could delete the place 2 by replacing with the group of non-zero rationals with odd numerator and denominator) then one would still get a perfectly good “adele” ring in place of A, and a perfectly good multiplicative group in place of (which would be the invertible elements in the ring of rationals with odd denominator), but somehow the arithmetic aspects of the adeles have been distorted in the process (in particular, Poisson summation and the functional equation get affected). The Riemann hypothesis doesn’t seem to extend to this general setting, so that suggests that if one wants to use adeles to prove RH, one has to somehow exploit the fact that one has all places present, and not just a subset of such places. Now, Poisson summation does exploit this very fact, and so technically this means that my objection does not apply to Li’s paper, but I feel that Poisson summation is not sufficient by itself for this task (just as the functional equation is insufficient to resolve RH), and some further exploitation of additive (or field-theoretic) structure of k should be needed. I don’t have a precise formalisation of this feeling, though.
  • 7 July, 2008 at 1:22 pm Gergely Harcos Dear Terry, you are absolutely right that Poisson summation over k inside A is the (now) standard way to obtain the functional equation for Hecke L-functions. This proof is due to Tate (his thesis from 1950), you can also find it in Weil’s Basic Number Theory, Chapter 7, Section 5.
  • 15 July, 2008 at 7:57 am michele I think that the paper of Prof. Xian-Jin Li will be very useful for a future and definitive proof of the Riemann hypothesis. Furthermore, many mathematics contents of this paper can be applied for further progress in varios sectors of theoretical physics (p-adic and adelic strings, zeta strings).
  • Babak Hi Terrance, A few months ago I stumbled upon an interesting differential equation while using probability heuristics to explore the distribution of primes. It’s probably nothing, but on the off-chance that it might mean something to a better trained mind, I decided to blog about it: http://babaksjournal.blogspot.com/2008/07/differential-equation-estimating.html -Babak
arithwsun arithwsun

Topics in Harmonic Analysis and Ergodic Theory - Blackwell Online - 0 views

  • Topics in Harmonic Analysis and Ergodic Theory Joseph M. Rosenblatt, Alexander M. Stokolos, Ahmed I. Zayed ISBN: 0821842358 Paperback American Mathematical Society Usually despatched within 3 to 9 days
  • There are strong connections between harmonic analysis and ergodic theory. A recent example of this interaction is the proof of the spectacular result by Terence Tao and Ben Green that the set of prime numbers contains arbitrarily long arithmetic progressions. The breakthrough achieved by Tao and Green is attributed to applications of techniques from ergodic theory and harmonic analysis to problems in number theory.Articles in the present volume are based on talks delivered by plenary speakers at a conference on Harmonic Analysis and Ergodic Theory (DePaul University, Chicago, December 2-4, 2005). Of ten articles, four are devoted to ergodic theory and six to harmonic analysis, although some may fall in either category. The articles are grouped in two parts arranged by topics. Among the topics are ergodic averages, central limit theorems for random walks, Borel foliations, ergodic theory and low pass filters, data fitting using smooth surfaces, Nehari's theorem for a polydisk, uniqueness theorems for multi-dimensional trigonometric series, and Bellman and s-functions.In addition to articles on current research topics in harmonic analysis and ergodic theory, this book contains survey articles on convergence problems in ergodic theory and uniqueness problems on multi-dimensional trigonometric series.
arithwsun arithwsun

[math/0512114] The dichotomy between structure and randomness, arithmetic progressions,... - 0 views

  •  
    Rather than give another exposition of this result, we have chosen to take a broader view, surveying the collection of structural theorems which underlie the proof of such results as Theorem 1.1 and Theorem 1.2.
arithwsun arithwsun

科学网-[转贴]西文数学书籍大全 4G多资源 - 0 views

  • Number theory : A Computational Introduction to Number Theory and Algebra - Victor Shoup A Concise Introduction to the Theory of Numbers- Baker A. A Course in Arithmetic (graduate level) - J. Serre A course in computational algebraic number theory - Cohen H. A Course in Number Theory and Cryptography 2 ed - Neal Koblitz A Course In Number Theory And Cryptography 2Ed - Koblitz N Advanced Number Theory - Cohn Algebra and number theory - Baker A. Algebraic Groups and Number Theory - Platonov & Rapinchuk Algebraic Number Theory - IYANAGA ALGEBRAIC NUMBER THEORY - MILNE Algorithmic Methods In Algebra And Number Theory - Pohst M Algorithmic number theory - Cohen H. Algorithmic number theory, vol. 1 Efficient algorithms - Bach E., Shallit J. An Explicit Approach To Elementary Number Theory - stein An Introduction to Conformal Field Theory [jnl article] - M. Gaberdiel AN INTRODUCTION TO THE THEORY OF NUMBERS - hardy & wright An Introduction to the Theory of Numbers - Leo Moser An introduction to the theory of numbers 5ed - Niven I., Zuckerman H.S., Montgomery H.L. Analytic number theory - Iwaniec H.,Kowalski E. Analytic Number Theory - Newman D.J. Analytic Number Theory- Jia & Matsumoto Arithmetic Theory of Elliptic Curves - J. Coates Computational Algebraic Number Theory - Pohst M E Computational excursions in analysis and number theory - Borwein P.
  • Only Problems Not Solutions - F. Smarandache Prime Numbers The Most Mysterious Figures in Math - D. Wells Problems In Algebraic Number Theory 2Ed - Murty M , Esmonde J SOlved and unsolved problems in Number Theory - Daniel Shanks Surfing on the Ocean of Numbers - H. Ibstedt Survey Of Diophantine Geometry - Serge Lang The elements of the theory of algebraic numbers - Hilbert.djv The Foundations of Arithmetic 2nd ed. revised - G. Frege The New Book Of Prime Number Records 3rd ed. - P. Ribenboim The Theory of algebraic numbers sec ed - Pollard H., Diamond H.G. the theory of functions and sets of natural numbers - Odifreddi, P Three Pearls of Number Theory - Khinchin Transcendental number theory - Baker A. Unsolved Problems In Number Theory 2 Ed - R K Guy.djv
  • Introduction to Modern Number Theory Fundamental Problems, Ideas and Theories 2nd Edition - Manin I., Panchishkin A Introduction to p-adic numbers and valuation theory- Bachman G. Introduction to the Theory of Numbers 4th ed. - G. Hardy, E. Wright Lectures on topics in algebraic number theory - Ghorpade Mainly Natural Numbers - Studies on Sequences - H. Ibstedt Math. problems and proofs combinatorics, number theory and geometry - B. Kisacanin Mathematical Problems And Proofs Combinatorics, Number Theory, and Geometry - Kluwer Academic My Numbers, My Friends - Popular Lectures on Number Theory My Numbers,My Friends Popular Lectures On Number Theory - Ribenboim Number Theory - Z.Borevitch, I. Shafarevich Number theory for beginners - Weil A. Number theory for computing - Yan S Y. Numerical Mathematics - A. Quarteroni, A. Sacco, F. Saleri Numerical Methods for Engineers and Scientists 2nd ed. - J. Hoffman Numerical Optimization - J. Nocedal, S. Wright Numerical Recipes in C - The Art Of Scientific Computing 2nd ed. Numerical Recipes in Fortran 77 2nd ed. Vol 1 Old And New Problems And Results In Combinatorial Number Theory - Erdos, P.&Graham, R.L
  • ...2 more annotations...
  • Contributions to the Founding of the Theory of Transfinite Numbers - Georg Cantor Definitions, Solved And Unsolved Problems, Conjectures and Theorems, In Number Theory And Geometry - Smarandache F Elementary Methods in Number Theory - Nathanson M.B Elementary Number Theory - Clark Elementary Number Theory - David M. Burton Elementary Number Theory And Primality Tests Elementary Number Theory Notes - santos Elementary theory of numbers - Sierpinski W. Elliptic Curves - Notes for Math 679 - J. Milne, U. Michigan Elliptic Curves 2nd ed. - D. Husemoeller Geometric Theorems, Diophantine Equations and Arithmetic Functions - J. Sandor History of the theory of numbers Vol.2. - Dickson L.E. Introduction To Analytic Number Theory - Apostol
  • Ramanujan's Notebooks : Ramanujan's Notebooks vol 1 - B. Berndt.djv Ramanujan's Notebooks vol 2 - B. Berndt.djv Ramanujan's Notebooks vol 3 - B. Berndt.djv Ramanujan's Notebooks vol 4 - B. Berndt.djv Ramanujan's Notebooks vol 5 - B. Berndt.djv
arithwsun arithwsun

SpringerLink - Journal Article - 0 views

  • Abstract  The pointwise ergodic theorem is proved for prime powers for functions inL p,p>1. This extends a result of Bourgain where he proved a similar theorem forp>(1+√3)/2.
arithwsun arithwsun

A paper on the ArXiV « Gowers's Weblog - 0 views

  • The paper itself is called “Hypergraph regularity and the multidimensional Szemerédi theorem.” At the bottom level, the basic idea of the paper is due to Ruzsa, Szemerédi and Rödl. Ruzsa and Szemerédi started the ball rolling with a short and very clever argument that showed that Szemerédi’s famous theorem on arithmetic progressions, in the case of progressions of length 3, could be deduced from Szemerédi’s almost as famous regularity lemma, a remarkable result that allows any graph to be partitioned into a bounded number of pieces, almost all of which “behave randomly.”
arithwsun arithwsun

Gowers' note for additive number theory - 0 views

  •  
    I have proposed this course for the academic year 2006-7. The syllabus is Roth's theorem, the geometry of numbers, Freiman's theorem, quasirandomness of graphs and 3-uniform hypergraphs, and Szemerédi's regularity lemmaThe course will be examined as a 24
arithwsun arithwsun

Szemerédi's regularity lemma revisited - 0 views

  •  
    one views the regularity lemma not as a structure theorem for large dense graphs, but rather as a structure theorem for events or random variables in a product probability space.
arithwsun arithwsun

An inverse theorem for the Gowers U^3 norm - 0 views

  •  
    we generalise a result of Gowers on Szemeredi's theorem.
arithwsun arithwsun

[math/0703749] Arithmetic structures in random sets - 0 views

  • We extend two well-known results in additive number theory, S\'ark\"ozy's theorem on square differences in dense sets and a theorem of Green on long arithmetic progressions in sumsets, to subsets of random sets of asymptotic density 0. Our proofs rely on a restriction-type Fourier analytic argument of Green and Green-Tao.
arithwsun arithwsun

Structure and randomness in combinatorics « What's new - 0 views

  •  
    I've just uploaded to the arXiv my lecture notes "Structure and randomness in combinatorics" for my tutorial at the upcoming FOCS 2007 conference in October. This tutorial covers similar ground as my ICM paper (or slides), or my first two Simons lectures, but focuses more on the "nuts-and-bolts" of how structure theorems actually work to separate objects into structured pieces and pseudorandom pieces, for various definitions of "structured" and "pseudorandom".  Given that the target audience consists of computer scientists, I have focused exclusively here on the combinatorial aspects of this dichotomy (applied for instance to functions on the Hamming cube) rather than, say, the ergodic theory aspects (which are covered in Bryna Kra's lecture notes from Montreal, or my notes from Montreal for that matter).  While most of the known applications of these decompositions are number-theoretic (e.g. my theorem with Ben Green), the number theory aspects are not covered in detail in these notes.  (For that, you can read Bernard Host's Bourbaki article, Ben Green's http
1 - 20 of 49 Next › Last »
Showing 20 items per page