Skip to main content

Home/ Educational Analytics/ Group items tagged scale

Rss Feed Group items tagged

George Bradford

Open Research Online - Learning dispositions and transferable competencies: pedagogy, m... - 0 views

  •  
    Theoretical and empirical evidence in the learning sciences substantiates the view that deep engagement in learning is a function of a complex combination of learners' identities, dispositions, values, attitudes and skills. When these are fragile, learners struggle to achieve their potential in conventional assessments, and critically, are not prepared for the novelty and complexity of the challenges they will meet in the workplace, and the many other spheres of life which require personal qualities such as resilience, critical thinking and collaboration skills. To date, the learning analytics research and development communities have not addressed how these complex concepts can be modelled and analysed, and how more traditional social science data analysis can support and be enhanced by learning analytics. We report progress in the design and implementation of learning analytics based on a research validated multidimensional construct termed "learning power". We describe, for the first time, a learning analytics infrastructure for gathering data at scale, managing stakeholder permissions, the range of analytics that it supports from real time summaries to exploratory research, and a particular visual analytic which has been shown to have demonstrable impact on learners. We conclude by summarising the ongoing research and development programme and identifying the challenges of integrating traditional social science research, with learning analytics and modelling.
George Bradford

Learning Dispositions and Transferable Competencies: Pedagogy, Modelling, and Learning ... - 0 views

  •  
    Simon Buckingham Shum Ruth Deakin Crick 2012 (In review) Theoretical and empirical evidence in the learning sciences  substantiates the view that deep engagement in learning is a  function of a  combination of learners' dispositions,  values,  attitudes and skills. When these are fragile, learners struggle to  achieve their potential in conventional assessments, and critically,  are not prepared for the novelty and complexity of the challenges  they will meet in the workplace, and the many other spheres of  life which require personal qualities such as resilience, critical  thinking and collaboration skills. To date, the learning analytics  research and development communities have not addressed how  these complex concepts can be modelled and analysed. We report  progress in the design and implementation of learning analytics  based on an empirically validated  multidimensional construct  termed  "learning power". We describe a  learning analytics  infrastructure  for gathering data at scale, managing stakeholder  permissions, the range of analytics that it supports from real time  summaries to exploratory research, and a particular visual analytic which has been shown to have demonstrable impact on learners.  We conclude by  summarising the ongoing research and  development programme.
George Bradford

Submissions for the Awards for Excellence in Learning Analytics « ascilite - 0 views

  •  
    "Awards for Excellence in Learning Analytics: Submissions The LA SIG operates an Awards program recognising excellence in the practical application of LA to enhance learning and teaching. A key driver for the Awards program is to create and share resources about effective LA practices. We want to give a voice to all who are working with LA to improve learning and teaching - whatever the scale of their endeavours.  To this end, all presentations from Award applicants are available below for viewing. (Submissions closed on 11 September).  We believe these presentations will form an important resource library around the use of LA in tertiary education across Australasia and New Zealand. You may view the awards submission criteria and other background information on the awards in the SIG Awards Program Information (PDF) and to find out more about LA-SIG activities, go here."
George Bradford

College Degrees, Designed by the Numbers - Technology - The Chronicle of Higher Education - 0 views

  • Arizona State's retention rate rose to 84 percent from 77 percent in recent years, a change that the provost credits largely to eAdvisor.
  • Mr. Lange and his colleagues had found that by the eighth day of class, they could predict, with 70-percent accuracy, whether a student would score a C or better. Mr. Lange built a system, rolled out in 2009, that sent professors frequently updated alerts about how well each student was predicted to do, based on course performance and online behavior.
  • Rio Salado knows from its database that students who hand in late assignments and don't log in frequently often fail or withdraw from a course. So the software is more likely to throw up a red flag for current students with those characteristics.
  • ...5 more annotations...
  • And in a cautionary tale about technical glitches, the college began sharing grade predictions with students last summer, hoping to encourage those lagging behind to step up, but had to shut the alerts down in the spring. Course revisions had skewed the calculations, and some predictions were found to be inaccurate. An internal analysis found no increase in the number of students dropping classes. An improved system is promised for the fall.
  • His software borrows a page from Netflix. It melds each student's transcript with thousands of past students' grades and standardized-test scores to make suggestions. When students log into the online portal, they see 10 "Course Suggestions for You," ranked on a five-star scale. For, say, a health-and-human-performance major, kinesiology might get five stars, as the next class needed for her major. Physics might also top the list, to satisfy a science requirement in the core curriculum.
  • Behind those recommendations is a complex algorithm, but the basics are simple enough. Degree requirements figure in the calculations. So do classes that can be used in many programs, like freshman writing. And the software bumps up courses for which a student might have a talent, by mining their records—grades, high-school grade-point average, ACT scores—and those of others who walked this path before.
  • The software sifts through a database of hundreds of thousands of grades other students have received. It analyzes the historical data to figure out how much weight to assign each piece of the health major's own academic record in forecasting how she will do in a particular course. Success in math is strongly predictive of success in physics, for example. So if her transcript and ACT score indicate a history of doing well in math, physics would probably be recommended over biology, though both satisfy the same core science requirement.
  • Every year, students in Tennessee lose their state scholarships because they fall a hair short of the GPA cutoff, Mr. Denley says, a financial swing that "massively changes their likelihood of graduating."
  •  
    July 18, 2012 College Degrees, Designed by the Numbers By Marc Parry Illustration by Randy Lyhus for The Chronicle Campuses are places of intuition and serendipity: A professor senses confusion on a student's face and repeats his point; a student majors in psychology after a roommate takes a course; two freshmen meet on the quad and eventually become husband and wife. Now imagine hard data substituting for happenstance. As Katye Allisone, a freshman at Arizona State University, hunkers down in a computer lab for an 8:35 a.m. math class, the Web-based course watches her back. Answers, scores, pace, click paths-it hoovers up information, like Google. But rather than personalizing search results, data shape Ms. Allisone's class according to her understanding of the material.
George Bradford

AUSSE | ACER - 0 views

  •  
    Australasian Survey of Student Engagement (AUSSE) Areas measured by the AUSSE The survey instruments used in the AUSSE collect information on around 100 specific learning activities and conditions along with information on individual demographics and educational contexts.The instruments contain items that map onto six student engagement scales: Academic Challenge - the extent to which expectations and assessments challenge students to learn; Active Learning - students' efforts to actively construct knowledge; Student and Staff Interactions - the level and nature of students' contact and interaction with teaching staff; Enriching Educational Experiences - students' participation in broadening educational activities; Supportive Learning Environment - students' feelings of support within the university community; and Work Integrated Learning - integration of employment-focused work experiences into study. The instruments also contain items that map onto seven outcome measures. Average overall grade is captured in a single item, and the other six are composite measures which reflect responses to several items: Higher-Order Thinking - participation in higher-order forms of thinking; General Learning Outcomes - development of general competencies; General Development Outcomes - development of general forms of individual and social development; Career Readiness - preparation for participation in the professional workforce; Average Overall Grade - average overall grade so far in course; Departure Intention - non-graduating students' intentions on not returning to study in the following year; and Overall Satisfaction - students' overall satisfaction with their educational experience.
1 - 6 of 6
Showing 20 items per page