Skip to main content

Home/ Educational Analytics/ Group items tagged analysis

Rss Feed Group items tagged

George Bradford

Open Research Online - Contested Collective Intelligence: rationale, technologies, and ... - 0 views

  •  
    We propose the concept of Contested Collective Intelligence (CCI) as a distinctive subset of the broader Collective Intelligence design space. CCI is relevant to the many organizational contexts in which it is important to work with contested knowledge, for instance, due to different intellectual traditions, competing organizational objectives, information overload or ambiguous environmental signals. The CCI challenge is to design sociotechnical infrastructures to augment such organizational capability. Since documents are often the starting points for contested discourse, and discourse markers provide a powerful cue to the presence of claims, contrasting ideas and argumentation, discourse and rhetoric provide an annotation focus in our approach to CCI. Research in sensemaking, computer-supported discourse and rhetorical text analysis motivate a conceptual framework for the combined human and machine annotation of texts with this specific focus. This conception is explored through two tools: a social-semantic web application for human annotation and knowledge mapping (Cohere), plus the discourse analysis component in a textual analysis software tool (Xerox Incremental Parser: XIP). As a step towards an integrated platform, we report a case study in which a document corpus underwent independent human and machine analysis, providing quantitative and qualitative insight into their respective contributions. A promising finding is that significant contributions were signalled by authors via explicit rhetorical moves, which both human analysts and XIP could readily identify. Since working with contested knowledge is at the heart of CCI, the evidence that automatic detection of contrasting ideas in texts is possible through rhetorical discourse analysis is progress towards the effective use of automatic discourse analysis in the CCI framework.
George Bradford

A unified framework for multi-level analysis of distributed learning - 0 views

  •  
    A unified framework for multi-level analysis of distributed learning Full Text: PDF Authors: Daniel Suthers University of Hawaii, Honolulu, HI Devan Rosen School of Communications, Ithaca College, Ithaca, NY Learning and knowledge creation is often distributed across multiple media and sites in networked environments. Traces of such activity may be fragmented across multiple logs and may not match analytic needs. As a result, the coherence of distributed interaction and emergent phenomena are analytically cloaked. Understanding distributed learning and knowledge creation requires multi-level analysis of the situated accomplishments of individuals and small groups and of how this local activity gives rise to larger phenomena in a network. We have developed an abstract transcript representation that provides a unified analytic artifact of distributed activity, and an analytic hierarchy that supports multiple levels of analysis. Log files are abstracted to directed graphs that record observed relationships (contingencies) between events, which may be interpreted as evidence of interaction and other influences between actors. Contingency graphs are further abstracted to two-mode directed graphs that record how associations between actors are mediated by digital artifacts and summarize sequential patterns of interaction. Transitive closure of these associograms creates sociograms, to which existing network analytic techniques may be applied, yielding aggregate results that can then be interpreted by reference to the other levels of analysis. We discuss how the analytic hierarchy bridges between levels of analysis and theory.
George Bradford

Open Research Online - Learning analytics to identify exploratory dialogue within synch... - 0 views

  •  
    While generic web analytics tend to focus on easily harvested quantitative data, Learning Analytics will often seek qualitative understanding of the context and meaning of this information. This is critical in the case of dialogue, which may be employed to share knowledge and jointly construct understandings, but which also involves many superficial exchanges. Previous studies have validated a particular pattern of "exploratory dialogue" in learning environments to signify sharing, challenge, evaluation and careful consideration by participants. This study investigates the use of sociocultural discourse analysis to analyse synchronous text chat during an online conference. Key words and phrases indicative of exploratory dialogue were identified in these exchanges, and peaks of exploratory dialogue were associated with periods set aside for discussion and keynote speakers. Fewer individuals posted at these times, but meaningful discussion outweighed trivial exchanges. If further analysis confirms the validity of these markers as learning analytics, they could be used by recommendation engines to support learners and teachers in locating dialogue exchanges where deeper learning appears to be taking place.
George Bradford

ScienceDirect - The Internet and Higher Education : A course is a course is a course: F... - 0 views

  •  
    "Abstract The authors compared the underlying student response patterns to an end-of-course rating instrument for large student samples in online, blended and face-to-face courses. For each modality, the solution produced a single factor that accounted for approximately 70% of the variance. The correlations among the factors across the class formats showed that they were identical. The authors concluded that course modality does not impact the dimensionality by which students evaluate their course experiences. The inability to verify multiple dimensions for student evaluation of instruction implies that the boundaries of a typical course are beginning to dissipate. As a result, the authors concluded that end-of-course evaluations now involve a much more complex network of interactions. Highlights ► The study models student satisfaction in the online, blended, and face-to-face course modalities. ► The course models vary technology involvement. ► Image analysis produced single dimension solutions. ► The solutions were identical across modalities. Keywords: Student rating of instruction; online learning; blended learning; factor analysis; student agency"
George Bradford

About | SNAPP - Social Networks Adapting Pedagogical Practice - 3 views

  •  
    "The Social Networks Adapting Pedagogical Practice (SNAPP) tool performs real-time social network analysis and visualization of discussion forum activity within popular commercial and open source Learning Management Systems (LMS). SNAPP essentially serves as a diagnostic instrument, allowing teaching staff to evaluate student behavioral patterns against learning activity design objectives and intervene as required a timely manner. Valuable interaction data is stored within a discussion forum but from the default threaded display of messages it is difficult to determine the level and direction of activity between participants. SNAPP infers relationship ties from the post-reply data and renders a social network diagram below the forum thread. The social network visualization can be filtered based upon user activity and social network data can be exported for further analysis in NetDraw. SNAPP integrates seamlessly with a variety of Learning Management Systems (Blackboard, Moodle and Desire2Learn) and must be triggered while a forum thread is displayed in a Web browser."
George Bradford

Social Media Research Toolkit - Social Media Lab - 0 views

  •  
    "This toolkit assembled by the Social Media Lab seeks to provide an overview of some of the many open access tools available for the study and analysis of social media and online communities. The table below presents the tools in alphabetical order and highlights the social media platforms they support and the features they provide. The list is not exhaustive and will be reviewed, updated, and enhanced in the coming months. The tools in this list offer varying degrees of analysis."
George Bradford

Wmatrix corpus analysis and comparison tool - 0 views

  •  
    Wmatrix is a software tool for corpus analysis and comparison. It provides a web interface to the USAS and CLAWS corpus annotation tools, and standard corpus linguistic methodologies such as frequency lists and concordances. It also extends the keywords method to key grammatical categories and key semantic domains. Wmatrix allows the user to run these tools via a web browser such as Opera, Firefox or Internet Explorer, and so will run on any computer (Mac, Windows, Linux, Unix) with a web browser and a network connection. Wmatrix was initially developed by Paul Rayson in the REVERE project, extended and applied to corpus linguistics during PhD work and is still being updated regularly. Earlier versions were available for Unix via terminal-based command line access (tmatrix) and Unix via Xwindows (Xmatrix), but these only offer retrieval of text pre-annotated with USAS and CLAWS.
George Bradford

Open Research Online - Learning dispositions and transferable competencies: pedagogy, m... - 0 views

  •  
    Theoretical and empirical evidence in the learning sciences substantiates the view that deep engagement in learning is a function of a complex combination of learners' identities, dispositions, values, attitudes and skills. When these are fragile, learners struggle to achieve their potential in conventional assessments, and critically, are not prepared for the novelty and complexity of the challenges they will meet in the workplace, and the many other spheres of life which require personal qualities such as resilience, critical thinking and collaboration skills. To date, the learning analytics research and development communities have not addressed how these complex concepts can be modelled and analysed, and how more traditional social science data analysis can support and be enhanced by learning analytics. We report progress in the design and implementation of learning analytics based on a research validated multidimensional construct termed "learning power". We describe, for the first time, a learning analytics infrastructure for gathering data at scale, managing stakeholder permissions, the range of analytics that it supports from real time summaries to exploratory research, and a particular visual analytic which has been shown to have demonstrable impact on learners. We conclude by summarising the ongoing research and development programme and identifying the challenges of integrating traditional social science research, with learning analytics and modelling.
George Bradford

Open Research Online - Discourse-centric learning analytics - 0 views

  •  
    Drawing on sociocultural discourse analysis and argumentation theory, we motivate a focus on learners' discourse as a promising site for identifying patterns of activity which correspond to meaningful learning and knowledge construction. However, software platforms must gain access to qualitative information about the rhetorical dimensions to discourse contributions to enable such analytics. This is difficult to extract from naturally occurring text, but the emergence of more-structured annotation and deliberation platforms for learning makes such information available. Using the Cohere web application as a research vehicle, we present examples of analytics at the level of individual learners and groups, showing conceptual and social network patterns, which we propose as indicators of meaningful learning.
George Bradford

People | Knowledge Media Institute | The Open University - 0 views

  •  
    People | Member | Simon Buckingham Shum Snr Lecturer in Knowledge Media I am fundamentally interested in technologies for sensemaking, specifically, which structure discourse to assist reflection and analysis. Examples: D3E, Compendium, ClaiMaker and Cohere.
George Bradford

Assessment and Analytics in Institutional Transformation (EDUCAUSE Review) | EDUCAUSE - 0 views

  • At the University of Maryland, Baltimore County (UMBC), we believe that process is an important factor in creating cultural change. We thus approach transformational initiatives by using the same scholarly rigor that we expect of any researcher. This involves (1) reviewing the literature and prior work in the area, (2) identifying critical factors and variables, (3) collecting data associated with these critical factors, (4) using rigorous statistical analysis and modeling of the question and factors, (5) developing hypotheses to influence the critical factors, and (6) collecting data based on the changes and assessing the results.
  • among predominantly white higher education institutions in the United States, UMBC has become the leading producer of African-American bachelor’s degree recipients who go on to earn Ph.D.’s in STEM fields. The program has been recognized by the National Science Foundation and the National Academies as a national model.
  • UMBC has recently begun a major effort focused on the success of transfer students in STEM majors. This effort, with pilot funding from the Bill and Melinda Gates Foundation, will look at how universities can partner with community colleges to prepare their graduates to successfully complete a bachelor’s degree in a STEM field.
  • ...5 more annotations...
  • Too often, IT organizations try to help by providing an analytics “dashboard” designed by a vendor that doesn’t know the institution. As a result, the dashboard indicators don’t focus on those key factors most needed at the institution and quickly become window-dressing.
  • IT organizations can support assessment by showing how data in separate systems can become very useful when captured and correlated. For example, UMBC has spent considerable effort to develop a reporting system based on our learning management system (LMS) data. This effort, led from within the IT organization, has helped the institution find new insights into the way faculty and students are using the LMS and has helped us improve the services we offer. We are now working to integrate this data into our institutional data warehouse and are leveraging access to important demographic data to better assess student risk factors and develop interventions.
  • the purpose of learning analytics is “to observe and understand learning behaviors in order to enable appropriate interventions.
  • the 1st International Conference on Learning Analytics and Knowledge (LAK) was held in Banff, Alberta, Canada, in early 2011 (https://tekri.athabascau.ca/analytics/)
  • At UMBC, we are using analytics and assessment to shine a light on students’ performance and behavior and to support teaching effectiveness. What has made the use of analytics and assessment particularly effective on our campus has been the insistence that all groups—faculty, staff, and students—take ownership of the challenge involving student performance and persistence.
  •  
    Assessment and analytics, supported by information technology, can change institutional culture and drive the transformation in student retention, graduation, and success. U.S. higher education has an extraordinary record of accomplishment in preparing students for leadership, in serving as a wellspring of research and creative endeavor, and in providing public service. Despite this success, colleges and universities are facing an unprecedented set of challenges. To maintain the country's global preeminence, those of us in higher education are being called on to expand the number of students we educate, increase the proportion of students in science, technology, engineering, and mathematics (STEM), and address the pervasive and long-standing underrepresentation of minorities who earn college degrees-all at a time when budgets are being reduced and questions about institutional efficiency and effectiveness are being raised.
George Bradford

[!!!] Penetrating the Fog: Analytics in Learning and Education (EDUCAUSE Review) | EDUC... - 0 views

  • Continued growth in the amount of data creates an environment in which new or novel approaches are required to understand the patterns of value that exist within the data.
  • learning analytics is the measurement, collection, analysis and reporting of data about learners and their contexts, for purposes of understanding and optimising learning and the environments in which it occurs.
  • Academic analytics, in contrast, is the application of business intelligence in education and emphasizes analytics at institutional, regional, and international levels.
  • ...14 more annotations...
  • Course-level:
  • Educational data-mining
  • Intelligent curriculum
  • Adaptive content
  • the University of Maryland, Baltimore County (UMBC) Check My Activity tool, allows learners to “compare their own activity . . . against an anonymous summary of their course peers.
  • Mobile devices
  • social media monitoring tools (e.g., Radian6)
  • Analytics in education must be transformative, altering existing teaching, learning, and assessment processes, academic work, and administration.
    • George Bradford
       
      See Bradford - Brief vision of the semantic web as being used to support future learning: http://heybradfords.com/moonlight/research-resources/SemWeb_EducatorsVision 
    • George Bradford
       
      See Peter Goodyear's work on the Ecology of Sustainable e-Learning in Education.
  • How “real time” should analytics be in classroom settings?
  • Adaptive learning
  • EDUCAUSE Review, vol. 46, no. 5 (September/October 2011)
  • Penetrating the Fog: Analytics in Learning and Education
  •  
    Attempts to imagine the future of education often emphasize new technologies-ubiquitous computing devices, flexible classroom designs, and innovative visual displays. But the most dramatic factor shaping the future of higher education is something that we can't actually touch or see: big data and analytics. Basing decisions on data and evidence seems stunningly obvious, and indeed, research indicates that data-driven decision-making improves organizational output and productivity.1 For many leaders in higher education, however, experience and "gut instinct" have a stronger pull.
George Bradford

College Degrees, Designed by the Numbers - Technology - The Chronicle of Higher Education - 0 views

  • Arizona State's retention rate rose to 84 percent from 77 percent in recent years, a change that the provost credits largely to eAdvisor.
  • Mr. Lange and his colleagues had found that by the eighth day of class, they could predict, with 70-percent accuracy, whether a student would score a C or better. Mr. Lange built a system, rolled out in 2009, that sent professors frequently updated alerts about how well each student was predicted to do, based on course performance and online behavior.
  • Rio Salado knows from its database that students who hand in late assignments and don't log in frequently often fail or withdraw from a course. So the software is more likely to throw up a red flag for current students with those characteristics.
  • ...5 more annotations...
  • And in a cautionary tale about technical glitches, the college began sharing grade predictions with students last summer, hoping to encourage those lagging behind to step up, but had to shut the alerts down in the spring. Course revisions had skewed the calculations, and some predictions were found to be inaccurate. An internal analysis found no increase in the number of students dropping classes. An improved system is promised for the fall.
  • His software borrows a page from Netflix. It melds each student's transcript with thousands of past students' grades and standardized-test scores to make suggestions. When students log into the online portal, they see 10 "Course Suggestions for You," ranked on a five-star scale. For, say, a health-and-human-performance major, kinesiology might get five stars, as the next class needed for her major. Physics might also top the list, to satisfy a science requirement in the core curriculum.
  • Behind those recommendations is a complex algorithm, but the basics are simple enough. Degree requirements figure in the calculations. So do classes that can be used in many programs, like freshman writing. And the software bumps up courses for which a student might have a talent, by mining their records—grades, high-school grade-point average, ACT scores—and those of others who walked this path before.
  • The software sifts through a database of hundreds of thousands of grades other students have received. It analyzes the historical data to figure out how much weight to assign each piece of the health major's own academic record in forecasting how she will do in a particular course. Success in math is strongly predictive of success in physics, for example. So if her transcript and ACT score indicate a history of doing well in math, physics would probably be recommended over biology, though both satisfy the same core science requirement.
  • Every year, students in Tennessee lose their state scholarships because they fall a hair short of the GPA cutoff, Mr. Denley says, a financial swing that "massively changes their likelihood of graduating."
  •  
    July 18, 2012 College Degrees, Designed by the Numbers By Marc Parry Illustration by Randy Lyhus for The Chronicle Campuses are places of intuition and serendipity: A professor senses confusion on a student's face and repeats his point; a student majors in psychology after a roommate takes a course; two freshmen meet on the quad and eventually become husband and wife. Now imagine hard data substituting for happenstance. As Katye Allisone, a freshman at Arizona State University, hunkers down in a computer lab for an 8:35 a.m. math class, the Web-based course watches her back. Answers, scores, pace, click paths-it hoovers up information, like Google. But rather than personalizing search results, data shape Ms. Allisone's class according to her understanding of the material.
George Bradford

Features | Gephi, open source graph visualization software - 0 views

  •  
    Features Gephi is a tool for people that have to explore and understand graphs. Like Photoshop but for data, the user interacts with the representation, manipulate the structures, shapes and colors to reveal hidden properties. The goal is to help data analysts to make hypothesis, intuitively discover patterns, isolate structure singularities or faults during data sourcing. It is a complementary tool to traditional statistics, as visual thinking with interactive interfaces is now recognized to facilitate reasoning. This is a software for Exploratory Data Analysis, a paradigm appeared in the Visual Analytics field of research.
1 - 14 of 14
Showing 20 items per page