Skip to main content

Home/ COSEE-West/ Group items tagged temperature

Rss Feed Group items tagged

Gwen Noda

Coral Bleaching: A White Hot Problem (COSEE-NOW) - 0 views

  •  
    "Some of the planet's most beautiful and diverse ecosystems are at risk. With temperatures on the rise, coral reefs are at greater risk for coral bleaching. Using ocean observing system data from NOAA's National Data Buoy Center, this classroom activity examines ocean temperatures off Puerto Rico to see how coral reefs are being impacted and predict what's on the horizon. Brought to you by Sea Grant's Bridge website and COSEE-NOW. This activity was developed in response to the 2005 massive coral bleaching event in the Caribbean caused by high sea surface temperatures. Using ocean observing system data, water temperatures can be monitored to evaluate the likeliness of other bleaching events. Via the COSEE-NOW online community, we were able to receive valuable feedback on making the graph of water temperature more user-friendly and expanding the discussion questions to evoke some higher level thinking from students. This activity has been demonstrated to teachers at the National Marine Educators Association conference and Virginia Sea Grant professional development institutes; and to graduate students in several different settings. http://www2.vims.edu/bridge/DATA.cfm?Bridge_Location=archive0406.html"
Gwen Noda

Carboschools library - Material for experiments - 0 views

  •  
    How is global temperature regulated? An experimental representation - Simple experiments to help pupils understand how different parameters regulate temperature at the Earth's surface. Interaction at the Air-Water Interface, part 1 - A very simple experiment to demonstrate gas exchange and equilibration at the boundary layer between air and water. Pupils will also observe acidification of water due to CO2 introduced directly in the water. Interaction at the Air-Water Interface, part 2 - A second set of experiment to demonstrate gas exchange and equilibration at the boundary layer between air and water. Pupils observe a high atmospheric CO2 concentration will produce water acidification. Uptake of Carbon Dioxide from the Water by Plants - The following experiments will demonstrate the role of plants in mitigating the acidification caused when CO2 is dissolved in water. Carbon Dioxide Fertilization of Marine Microalgae (Dunalliela sp.) Cultures: Marine microalgae in different atmospheric CO2 concentration - An experiment designed to illustrate the impact of carbon dioxide on microalgal growth in the aquatic environment. Introduction to the principles of climate modelling - Working with real data in spreadsheets to create a climate model, students discover the global carbon budget and make their own predictions for the next century. Global carbon budget between 1958 and 2007 - Working with real global carbon budget data, students produce graphs to find the best representation of the data to make predictions about human CO2 emissions for the next century. This activity is also a nice application of percentages. Estimation of natural carbon sinks - Working with real global carbon budget data, students estimate how much of the CO2 emitted into the atmosphere as a result of human activities is absorbed naturally each year. How does temperature affect the solubility of CO2 en the water? - The following experiments will explore effects of water temperature on sol
Gwen Noda

Random Sample - 0 views

  •  
    Science 25 November 2011: Vol. 334 no. 6059 p. 1039 DOI: 10.1126/science.334.6059.1039-b * News of the Week Random Sample Mongolia's 'Ice Shield' Figure View larger version: * In this page * In a new window Hot zone. Flanked by desert, Ulan Bator will be cooled in summer by an "ice shield." "CREDIT: BRÜCKE-OSTEUROPA/WIKIPEDIA" As the coldest capital on Earth, you might think the last thing Ulan Bator needs is more ice. But that is just what it's about to get under a geoengineering trial aimed at "storing" freezing winter temperatures to cool and water the city during the summer. At the end of this month, engineers will drill a series of bores through the ice on the Tuul River, pump up water from below, and spray it on the surface where it will freeze. This process will be repeated throughout the winter, adding layer after layer to create a chunk of ice that will be 7 or 8 meters thick by the spring. It's an attempt to artificially create the ultra-thick slabs-known as naleds in Russian-that occur naturally in far northern climes when rivers or springs push through surface cracks. Nomads have long made their summer camps near such phenomena, which melt much later than normal ice. Flanked by desert and plagued by summer temperatures that can rise close to 40°C, Ulan Bator's municipal government hopes the $724,000 experiment will create a cool microclimate and provide fresh water as the naled melts. ECOS & EMI, the Anglo-Mongolian company behind the plan, has still greater ambitions. "Everyone is panicking about melting glaciers and icecaps, but nobody has yet found a cheap, environmentally friendly alternative," says Robin Grayson, a geologist in Ulan Bator for ECOS & EMI. "If you know how to manipulate them, naled ice shields can repair permafrost and build cool parks in cities." The process, Grayson says, can be replicated anywhere where winter temperatures fall below −5°C for at least a couple of months.
Gwen Noda

Coral Bleaching Lesson at Bridge Ocean Education Teacher Resource Center - 0 views

  •  
    Summary: Assess coral bleaching using water temperature data from the NOAA National Data Buoy Center. Objectives * Describe the relationship between corals and zooxanthellae. * Identify stresses to corals. * Explain coral bleaching and the processes that cause coral bleaching. * Examine water temperature data and compare to levels known to induce coral bleaching. * Predict the effects of prolonged, increased temperaturs on coral reefs. Introduction The magnificent beauty of a coral reef is a true masterpiece of Mother Nature. A reef is a sculpture of living organisms, varied in color, texture, shape, and size. The creation of these works of art takes many, many years (some reefs are thousands of years old), and they don't exist solely for show. Reefs are building blocks for rich communities, providing habitat for a myriad of organisms, and they are some of the most diverse ecosystems on the planet. In addition, they support fishing grounds, attract tourists, and protect shorelines from waves and storms. "
Gwen Noda

Science Magazine: Sign In - 0 views

  •  
    Warming and Melting Mass loss from the ice sheets of Greenland and Antarctica account for a large fraction of global sea-level rise. Part of this loss is because of the effects of warmer air temperatures, and another because of the rising ocean temperatures to which they are being exposed. Joughin et al. (p. 1172) review how ocean-ice interactions are impacting ice sheets and discuss the possible ways that exposure of floating ice shelves and grounded ice margins are subject to the influences of warming ocean currents. Estimates of the mass balance of the ice sheets of Greenland and Antarctica have differed greatly-in some cases, not even agreeing about whether there is a net loss or a net gain-making it more difficult to project accurately future sea-level change. Shepherd et al. (p. 1183) combined data sets produced by satellite altimetry, interferometry, and gravimetry to construct a more robust ice-sheet mass balance for the period between 1992 and 2011. All major regions of the two ice sheets appear to be losing mass, except for East Antarctica. All told, mass loss from the polar ice sheets is contributing about 0.6 millimeters per year (roughly 20% of the total) to the current rate of global sea-level rise.
Gwen Noda

USC researcher experiments with changing ocean chemistry | 89.3 KPCC - 0 views

  •  
    "USC researcher experiments with changing ocean chemistry Jan. 19, 2011 | Molly Peterson | KPCC In his lab, USC's Dave Hutchins is simulating possible future atmospheres and temperatures for the Earth. He says he's trying to figure out how tiny organisms that form the base of the food web will react to a more carbon-intense ocean. Burning fossil fuels doesn't just put more carbon into the atmosphere and help warm the climate. It's also changing the chemistry of sea water. KPCC's Molly Peterson visits a University of Southern California researcher who studies the consequences of a more corrosive ocean. Tailpipes and refineries and smokestacks as far as the eye can see in Los Angeles symbolize the way people change the planet's climate. They remind Dave Hutchins that the ocean's changing too. Hutchins teaches marine biology at USC. He says about a third of all the carbon, or CO2, that people have pushed into earth's atmosphere ends up in sea water - "which is a good thing for us because if the ocean hadn't taken up that CO2 the greenhouse effect would be far more advanced than it is." He smiles. Hutchins says that carbon is probably not so good for the ocean. "The more carbon dioxide that enters the ocean the more acidic the ocean gets." On the pH scale, smaller numbers represent more acidity. The Monterey Bay Aquarium Research Institute estimates we've pumped 500 million tons of carbon into the world's oceans. Dave Hutchins at USC says that carbon has already lowered the pH value for sea water. "By the end of this century we are going to have increased the amount of acid in the ocean by maybe 200 percent over natural pre-industrial levels," he says. "So we are driving the chemistry of the ocean into new territory - into areas that it has never seen." Hutchins is one of dozens of scientists who study the ripples of that new chemistry into the marine ecosystem. Now for an aside. I make bubbly water at home with a soda machine, and to do that, I pump ca
Gwen Noda

Humans Are Driving Extreme Weather; Time to Prepare - 0 views

  •  
    "Science 25 November 2011: Vol. 334 no. 6059 p. 1040 DOI: 10.1126/science.334.6059.1040 * News & Analysis Climate Change Humans Are Driving Extreme Weather; Time to Prepare 1. Richard A. Kerr Figure View larger version: * In this page * In a new window Thai floods 2011 Hurricane Katrina 2005 Texas drought 2011 "CREDITS (LEFT TO RIGHT): PAULA BRONSTEIN/GETTY IMAGES; JEFF SCHMALTZ, MODIS RAPID RESPONSE TEAM, NASA/GSFC; NOAA" An international scientific assessment finds for the first time that human activity has indeed driven not just global warming but also increases in some extreme weather and climate events around the world in recent decades. And those and likely other weather extremes will worsen in coming decades as greenhouse gases mount, the report finds. But uncertainties are rife in the still-emerging field of extreme events. Scientists cannot attribute a particular drought or flood to global warming, and they can say little about past or future trends in the risk of high-profile hazards such as tropical cyclones. Damage from weather disasters has been climbing, but the report can attribute that trend only to the increasing exposure of life and property to weather risks. Climate change may be involved, but a case cannot yet be made. Despite the uncertainties, the special report from the Intergovernmental Panel on Climate Change (IPCC) released 18 November stresses that there is still reason for taking action now. The panel recommends "low-regrets measures," such as improvements in everything from drainage systems to early warning systems. Such measures would benefit society in dealing with the current climate as well as with almost any range of possible future climates. The report takes a cautious, consensus-based approach that draws on the published literature. Headlines and even some scientists may point to the current Texas drought or the 2003 European heat wave as the result of the strengthening greenhouse. But the report fin
Gwen Noda

YouTube - NASA: Climate Change And the Global Ocean [720p] - 2 views

  •  
    We know climate change can affect us, but does climate change alter something as vast, deep and mysterious as our oceans? For years, scientists have studied the world's oceans by sending out ships and divers, deploying data-gathering buoys, and by taking aerial measurements from planes. But one of the better ways to understand oceans is to gain an even broader perspective - the view from space. NASA's Earth observing satellites do more than just take pictures of our planet. High-tech sensors gather data, including ocean surface temperature, surface winds, sea level, circulation, and even marine life. Information the satellites obtain help us understand the complex interactions driving the world's oceans today - and gain valuable insight into how the impacts of climate change on oceans might affect us on dry land.
Gwen Noda

Coral Reefs and Climate Change - How does climate change affect coral reefs - Cosee Coa... - 0 views

  •  
    How does climate change affect coral reefs? The warmer air and ocean surface temperatures brought on by climate change impact corals and alter coral reef communities by prompting coral bleaching events and altering ocean chemistry. These impacts affect corals and the many organisms that use coral reefs as habitat.
Gwen Noda

The Yale Forum on Climate Change & The Media » Covering Ocean Acidification: ... - 0 views

  •  
    Covering Ocean Acidification: Chemistry and Considerations Marah Hardt and Carl Safina June 24, 2008 Changing ocean chemistry threatens the survival of marine life as much as warming temperatures. Understanding the basic chemistry of ocean acidification and the relevant consequences for people and wildlife are keys to effective journalism on an issue of growing importance and interest to media audiences.
Gwen Noda

Ocean Acification Simulation - Interactive Earth - natural history education, website d... - 0 views

  •  
    Ocean Acification Simulation Ocean AcidificationI developed this Carbonate Simulation to enables students and teachers to visualize how changes in atmospheric temperature and carbon dioxide concentrations may affect levels of carbon dioxide levels and related chemistry of the oceans. The applet uses coral reefs as an example of organisms that may be particularly affected by these changes in water chemistry.
Gwen Noda

Could East Antarctica Be Headed for Big Melt? - 0 views

  •  
    "The Orangeburg Scarp, a band of hard, crusty sediment teeming with tiny plankton fossils that runs from Florida to Virginia, marks an ancient shoreline where waves eroded bedrock 3 million years ago. That period, the middle Pliocene, saw carbon dioxide levels and temperatures that many scientists say could recur by 2100. The question is: Could those conditions also result in Pliocene-epoch sea levels within the next 10 to 20 centuries, sea levels that may have been as much as 35 meters higher than they are today? The answer, say climate scientists, may lie 17,000 kilometers away in East Antarctica. The East Antarctic Ice Sheet is the world's largest, a formation up to 4 km thick and 11 million km2 in area that covers three-quarters of the southernmost continent. Its glaciers were thought to sit mostly above sea level, protecting them from the type of ocean-induced losses that are affecting the West Antarctic Ice Sheet. But studies of ancient sea levels that focus on the Orangeburg Scarp and other sites challenge that long-held assumption. Not everybody believes the records from Orangeburg. But combined with several other new lines of evidence, they support the idea that parts of East Antarctica could indeed be more prone to melting than expected. "
Gwen Noda

Unicellular Cyanobacterial Distributions Broaden the Oceanic N2 Fixation Domain - 0 views

  •  
    "Nitrogen (N2)-fixing microorganisms (diazotrophs) are an important source of biologically available fixed N in terrestrial and aquatic ecosystems and control the productivity of oligotrophic ocean ecosystems. We found that two major groups of unicellular N2-fixing cyanobacteria (UCYN) have distinct spatial distributions that differ from those of Trichodesmium, the N2-fixing cyanobacterium previously considered to be the most important contributor to open-ocean N2 fixation. The distributions and activity of the two UCYN groups were separated as a function of depth, temperature, and water column density structure along an 8000-kilometer transect in the South Pacific Ocean. UCYN group A can be found at high abundances at substantially higher latitudes and deeper in subsurface ocean waters than Trichodesmium. These findings have implications for the geographic extent and magnitude of basin-scale oceanic N2 fixation rates. "
1 - 20 of 36 Next ›
Showing 20 items per page