Skip to main content

Home/ COSEE-West/ Group items tagged plants

Rss Feed Group items tagged

Gwen Noda

"orange goo" found in Alaska - 0 views

  •  
    http://www.alaskafisheries.noaa.gov/newsreleases/2011/orangesubstance081811.pdf Alaska - NOAA determines "orange goo" in Alaska's Kivalina village is fungal spores The "orange goo" that washed ashore earlier this month in the remote Eskimo village of Kivalina along Alaska's northwest coast is fungal spores, not microscopic eggs as preliminary analysis indicated. Scientists at the NOAA Alaska Fisheries Science Center's Auke Bay Laboratory announced last week that the substance was biological in nature, rather than oil or pollution as originally thought by concerned residents of Kivalina. Per standard scientific procedure, samples were sent to NOAA's Analytical Response Team for a more thorough and detailed analysis and verification process. At NOAA's National Ocean Service Center for Coastal Environmental Health and Biomolecular Research, based in Charleston, S.C., a team of scientists highly-specialized and equipped to analyze microbiologic phenomena such as this determined that the substance is consistent with spores from a fungi that cause rust, a disease that infects only plants causing a rust-like appearance on leaves and stems. Rust fungi reproduce to infect other plants by releasing spores which disperse often times great distances by wind and water. However, whether this spore belongs to one of the 7,800 known species of rust fungi has not yet been determined. More information will be posted on the Alaska Fisheries Science Center website as it becomes available.
Gwen Noda

Carboschools library - Material for experiments - 0 views

  •  
    How is global temperature regulated? An experimental representation - Simple experiments to help pupils understand how different parameters regulate temperature at the Earth's surface. Interaction at the Air-Water Interface, part 1 - A very simple experiment to demonstrate gas exchange and equilibration at the boundary layer between air and water. Pupils will also observe acidification of water due to CO2 introduced directly in the water. Interaction at the Air-Water Interface, part 2 - A second set of experiment to demonstrate gas exchange and equilibration at the boundary layer between air and water. Pupils observe a high atmospheric CO2 concentration will produce water acidification. Uptake of Carbon Dioxide from the Water by Plants - The following experiments will demonstrate the role of plants in mitigating the acidification caused when CO2 is dissolved in water. Carbon Dioxide Fertilization of Marine Microalgae (Dunalliela sp.) Cultures: Marine microalgae in different atmospheric CO2 concentration - An experiment designed to illustrate the impact of carbon dioxide on microalgal growth in the aquatic environment. Introduction to the principles of climate modelling - Working with real data in spreadsheets to create a climate model, students discover the global carbon budget and make their own predictions for the next century. Global carbon budget between 1958 and 2007 - Working with real global carbon budget data, students produce graphs to find the best representation of the data to make predictions about human CO2 emissions for the next century. This activity is also a nice application of percentages. Estimation of natural carbon sinks - Working with real global carbon budget data, students estimate how much of the CO2 emitted into the atmosphere as a result of human activities is absorbed naturally each year. How does temperature affect the solubility of CO2 en the water? - The following experiments will explore effects of water temperature on sol
Gwen Noda

Know Your Ocean | Science and Technology | Ocean Today - 0 views

  •  
    NARRATOR: Even though the ocean covers seventy percent of the Earth's surface, people tend to know more information about land than the sea. As a result, our understanding of the ocean is often incomplete or full of misconceptions. How well do you know the ocean? You may think Earth has five separate oceans. They're clearly labeled on our maps. But, in actuality, these are all connected, and part of one global ocean system. Ever wonder why the ocean is blue? You may have heard its because the water reflects the color of the sky. Not quite. Sunlight contains all the colors of the rainbow. When it hits the ocean, it gets scattered by the water molecules. Blue light is scattered the most, which is why the ocean appears blue. Even more interesting is that floating plants and sediments in the water can cause light to bounce in such a way for the ocean to appear green, yellow, and even red! Another idea some people have is that the sea floor is flat. Actually, just like land, the sea floor has canyons, plains, and mountain ranges. And many of these features are even bigger than those found on land. You may also think that our ocean's saltwater is just a mix of water and table salt. Not so. Seawater's "salt" is actually made of dissolved minerals from surface runoff. That is, excess water from rain and melting snow flowing over land and into the sea. This is why the ocean doesn't have the same level of salinity everywhere. Salinity varies by location and season. Finally, you may have heard that melting sea ice will cause sea levels to rise. In reality, sea ice is just frozen seawater, and because it routinely freezes and melts, its volume is already accounted for in the ocean. Sea levels can rise, however, from ice that melts off land and into the ocean. Understanding basic facts about the ocean is important since it affects everything from our atmosphere to our ecosystems. By knowing your ocean, you are better prepared to help protect it.
Gwen Noda

Joint Expedition Discovers Deep-Sea Biodiversity, New Volcanoes - 0 views

  •  
    The shallow water reefs of the Coral Triangle, which stretches across Indonesia and north through the Philippines, host the world's greatest diversity of corals, fish, crustaceans, mollusks, and marine plant species. Now preliminary results from a joint Indonesian-U.S. marine survey indicate that the biodiversity runs deep. A remotely operated vehicle has captured stunning images of massive corals, as well as unusual crustaceans and fish living at depths never before surveyed, thousands of meters below the surface. And mapping of that sea floor has turned up a huge, previously unknown volcano.
Gwen Noda

USC researcher experiments with changing ocean chemistry | 89.3 KPCC - 0 views

  •  
    "USC researcher experiments with changing ocean chemistry Jan. 19, 2011 | Molly Peterson | KPCC In his lab, USC's Dave Hutchins is simulating possible future atmospheres and temperatures for the Earth. He says he's trying to figure out how tiny organisms that form the base of the food web will react to a more carbon-intense ocean. Burning fossil fuels doesn't just put more carbon into the atmosphere and help warm the climate. It's also changing the chemistry of sea water. KPCC's Molly Peterson visits a University of Southern California researcher who studies the consequences of a more corrosive ocean. Tailpipes and refineries and smokestacks as far as the eye can see in Los Angeles symbolize the way people change the planet's climate. They remind Dave Hutchins that the ocean's changing too. Hutchins teaches marine biology at USC. He says about a third of all the carbon, or CO2, that people have pushed into earth's atmosphere ends up in sea water - "which is a good thing for us because if the ocean hadn't taken up that CO2 the greenhouse effect would be far more advanced than it is." He smiles. Hutchins says that carbon is probably not so good for the ocean. "The more carbon dioxide that enters the ocean the more acidic the ocean gets." On the pH scale, smaller numbers represent more acidity. The Monterey Bay Aquarium Research Institute estimates we've pumped 500 million tons of carbon into the world's oceans. Dave Hutchins at USC says that carbon has already lowered the pH value for sea water. "By the end of this century we are going to have increased the amount of acid in the ocean by maybe 200 percent over natural pre-industrial levels," he says. "So we are driving the chemistry of the ocean into new territory - into areas that it has never seen." Hutchins is one of dozens of scientists who study the ripples of that new chemistry into the marine ecosystem. Now for an aside. I make bubbly water at home with a soda machine, and to do that, I pump ca
Gwen Noda

Science/AAAS: Science Magazine: The Tohoku-Oki Earthquake, Japan - 0 views

  •  
    Special: The Tohoku-Oki Earthquake, Japan The 11 March 2011 magnitude-9.0 Tohoku-Oki earthquake off the eastern coast of Japan was one of the largest recorded earthquakes in history. It triggered a devastating tsunami that killed more than 20,000 people and an ongoing nuclear disaster at the Fukushima Daiichi power plant. Three research papers in the 17 June 2011 issue (published on 19 May) report on the mechanics of this megaquake and provide insights into the behavior of other very large, rare earthquakes. Science is making these research papers FREE for all site visitors. Also provided is a collection of recent news coverage of the Japan earthquake and nuclear crisis in Science and on our science news and policy blog, ScienceInsider.
1 - 19 of 19
Showing 20 items per page