Skip to main content

Home/ Computer Science Knowledge Sharing/ Group items tagged find

Rss Feed Group items tagged

Abdelrahman Ogail

Simulated annealing - Wikipedia, the free encyclopedia - 1 views

  • Simulated annealing (SA) is a generic probabilistic metaheuristic for the global optimization problem of applied mathematics, namely locating a good approximation to the global minimum of a given function in a large search space. It is often used when the search space is discrete (e.g., all tours that visit a given set of cities). For certain problems, simulated annealing may be more effective than exhaustive enumeration — provided that the goal is merely to find an acceptably good solution in a fixed amount of time, rather than the best possible solution. The name and inspiration come from annealing in metallurgy, a technique involving heating and controlled cooling of a material to increase the size of its crystals and reduce their defects. The heat causes the atoms to become unstuck from their initial positions (a local minimum of the internal energy) and wander randomly through states of higher energy; the slow cooling gives them more chances of finding configurations with lower internal energy than the initial one. By analogy with this physical process, each step of the SA algorithm replaces the current solution by a random "nearby" solution, chosen with a probability that depends on the difference between the corresponding function values and on a global parameter T (called the temperature), that is gradually decreased during the process. The dependency is such that the current solution changes almost randomly when T is large, but increasingly "downhill" as T goes to zero. The allowance for "uphill" moves saves the method from becoming stuck at local minima—which are the bane of greedier methods. The method was independently described by S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi in 1983 [1], and by V. Černý in 1985 [2]. The method is an adaptation of the Metropolis-Hastings algorithm, a Monte Carlo method to generate sample states of a thermodynamic system, invented by N. Metropolis et al. in 1953 [3].
  • Simulated annealing (SA) is a generic probabilistic metaheuristic for the global optimization problem of applied mathematics, namely locating a good approximation to the global minimum of a given function in a large search space. It is often used when the search space is discrete (e.g., all tours that visit a given set of cities). For certain problems, simulated annealing may be more effective than exhaustive enumeration — provided that the goal is merely to find an acceptably good solution in a fixed amount of time, rather than the best possible solution. The name and inspiration come from annealing in metallurgy, a technique involving heating and controlled cooling of a material to increase the size of its crystals and reduce their defects. The heat causes the atoms to become unstuck from their initial positions (a local minimum of the internal energy) and wander randomly through states of higher energy; the slow cooling gives them more chances of finding configurations with lower internal energy than the initial one. By analogy with this physical process, each step of the SA algorithm replaces the current solution by a random "nearby" solution, chosen with a probability that depends on the difference between the corresponding function values and on a global parameter T (called the temperature), that is gradually decreased during the process. The dependency is such that the current solution changes almost randomly when T is large, but increasingly "downhill" as T goes to zero. The allowance for "uphill" moves saves the method from becoming stuck at local minima—which are the bane of greedier methods. The method was independently described by S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi in 1983 [1], and by V. Černý in 1985 [2]. The method is an adaptation of the Metropolis-Hastings algorithm, a Monte Carlo method to generate sample states of a thermodynamic system, invented by N. Metropolis et al. in 1953 [3].
  • Simulated annealing (SA) is a generic probabilistic metaheuristic for the global optimization problem of applied mathematics, namely locating a good approximation to the global minimum of a given function in a large search space. It is often used when the search space is discrete (e.g., all tours that visit a given set of cities). For certain problems, simulated annealing may be more effective than exhaustive enumeration — provided that the goal is merely to find an acceptably good solution in a fixed amount of time, rather than the best possible solution. The name and inspiration come from annealing in metallurgy, a technique involving heating and controlled cooling of a material to increase the size of its crystals and reduce their defects. The heat causes the atoms to become unstuck from their initial positions (a local minimum of the internal energy) and wander randomly through states of higher energy; the slow cooling gives them more chances of finding configurations with lower internal energy than the initial one. By analogy with this physical process, each step of the SA algorithm replaces the current solution by a random "nearby" solution, chosen with a probability that depends on the difference between the corresponding function values and on a global parameter T (called the temperature), that is gradually decreased during the process. The dependency is such that the current solution changes almost randomly when T is large, but increasingly "downhill" as T goes to zero. The allowance for "uphill" moves saves the method from becoming stuck at local minima—which are the bane of greedier methods. The method was independently described by S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi in 1983 [1], and by V. Černý in 1985 [2]. The method is an adaptation of the Metropolis-Hastings algorithm, a Monte Carlo method to generate sample states of a thermodynamic system, invented by N. Metropolis et al. in 1953 [3].
  • ...1 more annotation...
  • Simulated annealing (SA) is a generic probabilistic metaheuristic for the global optimization problem of applied mathematics, namely locating a good approximation to the global minimum of a given function in a large search space. It is often used when the search space is discrete (e.g., all tours that visit a given set of cities). For certain problems, simulated annealing may be more effective than exhaustive enumeration — provided that the goal is merely to find an acceptably good solution in a fixed amount of time, rather than the best possible solution. The name and inspiration come from annealing in metallurgy, a technique involving heating and controlled cooling of a material to increase the size of its crystals and reduce their defects. The heat causes the atoms to become unstuck from their initial positions (a local minimum of the internal energy) and wander randomly through states of higher energy; the slow cooling gives them more chances of finding configurations with lower internal energy than the initial one. By analogy with this physical process, each step of the SA algorithm replaces the current solution by a random "nearby" solution, chosen with a probability that depends on the difference between the corresponding function values and on a global parameter T (called the temperature), that is gradually decreased during the process. The dependency is such that the current solution changes almost randomly when T is large, but increasingly "downhill" as T goes to zero. The allowance for "uphill" moves saves the method from becoming stuck at local minima—which are the bane of greedier methods. The method was independently described by S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi in 1983 [1], and by V. Černý in 1985 [2]. The method is an adaptation of the Metropolis-Hastings algorithm, a Monte Carlo method to generate sample states of a thermodynamic system, invented by N. Metropolis et al. in 1953 [3].
  •  
    Simulated annealing (SA) is a generic probabilistic metaheuristic for the global optimization problem of applied mathematics, namely locating a good approximation to the global minimum of a given function in a large search space. It is often used when the search space is discrete (e.g., all tours that visit a given set of cities). For certain problems, simulated annealing may be more effective than exhaustive enumeration - provided that the goal is merely to find an acceptably good solution in a fixed amount of time, rather than the best possible solution. The name and inspiration come from annealing in metallurgy, a technique involving heating and controlled cooling of a material to increase the size of its crystals and reduce their defects. The heat causes the atoms to become unstuck from their initial positions (a local minimum of the internal energy) and wander randomly through states of higher energy; the slow cooling gives them more chances of finding configurations with lower internal energy than the initial one. By analogy with this physical process, each step of the SA algorithm replaces the current solution by a random "nearby" solution, chosen with a probability that depends on the difference between the corresponding function values and on a global parameter T (called the temperature), that is gradually decreased during the process. The dependency is such that the current solution changes almost randomly when T is large, but increasingly "downhill" as T goes to zero. The allowance for "uphill" moves saves the method from becoming stuck at local minima-which are the bane of greedier methods. The method was independently described by S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi in 1983 [1], and by V. Černý in 1985 [2]. The method is an adaptation of the Metropolis-Hastings algorithm, a Monte Carlo method to generate sample states of a thermodynamic system, invented by N. Metropolis et al. in 1953 [3].
  •  
    A natural AI approach
Janos Haits

Citavi - Reference Management and Knowledge Organization - 0 views

  •  
    "Search databases and library catalogs directly from within Citavi. Save results to your project with a click. Surf and save: when you find a book, article, or webpage online, use the Picker to quickly add its information to Citavi. Save copies of webpages as PDFs. Find and save all available PDF full text articles in Citavi. Everything in one place and always at hand."
Janos Haits

Safety Scanner - Windows Defender Security Intelligence - 0 views

  •  
    "Microsoft Safety Scanner is a scan tool designed to find and remove malware from Windows computers. Simply download it and run a scan to find malware and try to reverse changes made by identified threats."
bar software

Miximising Profits While Keeping Costs Low - 3 views

We use H&L bar point of sale solution to manage wage costs and payroll across multiple venues and find it an effective tool. Our managers appreciate the ability to review staff costs on a dail...

bar point of sale software POS computer Programming

started by bar software on 06 Mar 12 no follow-up yet
Abdelrahman Ogail

Genetic programming - Wikipedia, the free encyclopedia - 0 views

  • In artificial intelligence, genetic programming (GP) is an evolutionary algorithm-based methodology inspired by biological evolution to find computer programs that perform a user-defined task. It is a specialization of genetic algorithms (GA) where each individual is a computer program. Therefore it is a machine learning technique used to optimize a population of computer programs according to a fitness landscape determined by a program's ability to perform a given computational task.
  • In artificial intelligence, genetic programming (GP) is an evolutionary algorithm-based methodology inspired by biological evolution to find computer programs that perform a user-defined task. It is a specialization of genetic algorithms (GA) where each individual is a computer program. Therefore it is a machine learning technique used to optimize a population of computer programs according to a fitness landscape determined by a program's ability to perform a given computational task.
Janos Haits

Home | Open Data Portal - 0 views

  •  
    "The European Union Open Data Portal (EU ODP) gives you access to open data published by EU institutions and bodies. All the data you can find via this catalogue are free to use and reuse for commercial or non-commercial purposes."
Janos Haits

Freedom to Tinker - Research and expert commentary on digital technologies in public life - 0 views

  •  
    "Freedom to Tinker is hosted by Princeton's Center for Information Technology Policy, a research center that studies digital technologies in public life. Here you'll find comment and analysis from the digital frontier, written by the Center's faculty, students, and friends."
Janos Haits

discuss.ipfs.io - 0 views

  •  
    "These forums are the main place to ask questions, share information and find like-minded people who are using IPFS, libp2p, multiformats, orbit, orbit-db, IPLD, or any of the other libraries, tools and protocols created … read more"
Janos Haits

Knil | The best way to search and find when you're mobile - 0 views

  •  
    "Knil structures the information of the web into actionable knowledge"
Janos Haits

Lunyr - 0 views

  •  
    "Lunyr is an Ethereum-based decentralized crowdsourced encyclopedia which rewards users with app tokens for peer-reviewing and contributing information. We aim to be the starting point of the internet for finding reliable, accurate information. Our long-term vision is to develop a knowledge base API that developers can use to create next generation decentralized applications in Artificial Intelligence, Virtual Reality, Augmented Reality, and more."
Janos Haits

EDRi - Defending rights and freedoms online - 0 views

  •  
    'European Digital Rights (EDRi) is an association of civil and human rights organisations from across Europe. We defend rights and freedoms in the digital environment. You can find our members here.'
Janos Haits

searchcode | source code search engine - 0 views

  •  
    'Type in anything you want to find and you will be presented with the results that match with the relevant lines highlighted. Searches can filtered down using the filter panel. Some suggested search terms,'
Janos Haits

IPFS Distributions - 0 views

  •  
    "This is the downloads website for all the official software distributions of the IPFS Project. You can find all the apps, binaries, and packages here. Every distribution has a section on this page with … the distribution name and a short description the current version number and release date"
Janos Haits

Quantiki | Quantum Information Portal and Wiki - 1 views

  •  
    "The world's leading portal for everyone involved in quantum information science. No matter if you are a researcher, a student or an enthusiast of quantum theory, this is the place you are going to find useful and enjoyable! While here on Quantiki you can: browse our content, including fascinating and educative articles, then create your own account and log in to gain more editorial possibilities."
Janos Haits

System Pro | Search Reinvented for Research™ - 0 views

  •  
    "Search reinvented for research™ Meet System Pro The fastest and most reliable way to find, synthesize, and contextualize scientific research - starting in health and life sciences."
shalani mujer

Top-Notch Computer Tech Support Service - 1 views

I will always be thankful to ComputerTechSupportService because they always provide top caliber computer support service that you can never find anywhere. They have certified PC technicians wh...

computer support service

started by shalani mujer on 10 Nov 11 no follow-up yet
Abdelrahman Ogail

Common Mistakes in Online and Real-time Contests - 0 views

  • Dynamic programming problems are to be solved with tabular methods
    • Ahmed Mansour
       
      Dynamic programming, like the divide-and-conquer method, solves problems by combining the solutions to subproblems. ("Programming" in this context refers to a tabular method, not to writing computer code) y3ney 3bara 3n 2nene bn2sem el problem el kbirr le shwit probelsm so3'ira .. we ne solve el problems deh we ngma el yab2a dh 7l lel problem el kbira :D;d see introduction to algorithms book . chapter 15
  • breadth-first search
    • Ahmed Mansour
       
      In graph theory, breadth-first search (BFS) is a graph search algorithm that begins at the root node and explores all the neighboring nodes. Then for each of those nearest nodes, it explores their unexplored neighbor nodes, and so on, until it finds the goal. ya3ney be el 3arby keda lw ana 3ndy tree maslan we el tree dh bettkwen mn shwit levels 3ady gedan.. lama hagey 23mel search 3la node mo3ina fi el tree deh hamsk el tree mn el root bet3ha ely hwa level 0 we habda2 2mshy level by level y3ney hanzl 3la el level 1 we hakaz le 3'it mal2y el node bet3ty ,,,, see this ,, it's a tutorial show how BFS algorithm is work!! http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/GraphAlgor/breadthSearch.htm
  • Memorize the value of pi You should always try to remember the value of pi as far as possible, 3.1415926535897932384626433832795, certainly the part in italics. The judges may not give the value in the question, and if you use values like 22/7 or 3.1416 or 3.142857, then it is very likely that some of the critical judge inputs will cause you to get the wrong answer. You can also get the value of pi as a compiler-defined constant or from the following code: Pi=2*acos(0)
    • Islam TeCNo
       
      hhhhhhhhhhh ...... awl mara a3rf el mawdo3 dah we awl mara a3raf en el Pi = 2*acos(0)
    • Abdelrahman Ogail
       
      Thanks Islam for the info, really useful
  • ...4 more annotations...
  • You cannot always check the equality of floating point numbers with the = = operator in C/C++. Logically their values may be same, but due to precision limit and rounding errors they may differ by some small amount and may be incorrectly deemed unequal by your program
  • #define swap(xxx, yyy) (xxx) ^= (yyy) ^= (xxx) ^= (yyy)
    • Islam TeCNo
       
      I remember someone told me that it's impossible to do swaping using macros :D ...but i think it's possible
  • But recursion should not be discounted completely, as some problems are very easy to solve recursively (DFS, backtracking)
    • Islam TeCNo
       
      Some problems are much easier when using recursion
  • Having a good understanding of probability is vital to being a good programmer
  •  
    for bignner acmers hoping to be useful !
  •  
    in this article the author discuss the common problems that faced teams in ACM contests .. and how to avoid it !
Abdelrahman Ogail

Hill climbing - Wikipedia, the free encyclopedia - 0 views

  • In computer science, hill climbing is a mathematical optimization technique which belongs to the family of local search. It is relatively simple to implement, making it a popular first choice. Although more advanced algorithms may give better results, in some situations hill climbing works just as well. Hill climbing can be used to solve problems that have many solutions, some of which are better than others. It starts with a random (potentially poor) solution, and iteratively makes small changes to the solution, each time improving it a little. When the algorithm cannot see any improvement anymore, it terminates. Ideally, at that point the current solution is close to optimal, but it is not guaranteed that hill climbing will ever come close to the optimal solution. For example, hill climbing can be applied to the traveling salesman problem. It is easy to find a solution that visits all the cities but will be very poor compared to the optimal solution. The algorithm starts with such a solution and makes small improvements to it, such as switching the order in which two cities are visited. Eventually, a much better route is obtained. Hill climbing is used widely in artificial intelligence, for reaching a goal state from a starting node. Choice of next node and starting node can be varied to give a list of related algorithms.
Islam TeCNo

Uniform Resource Identifier - Wikipedia, the free encyclopedia - 0 views

shared by Islam TeCNo on 16 Jun 09 - Cached
  • In computing, a Uniform Resource Identifier (URI) consists of a string of characters used to identify or name a resource on the Internet. Such identification enables interaction with representations of the resource over a network (typically the World Wide Web) using specific protocols. Schemes specifying a specific syntax and associated protocols define each URI. Contents [hide]
    • Abdelrahman Ogail
       
      I've confused between URL & URI till reading this article !
    • Islam TeCNo
       
      URL no3 men el URI :D ....ana faker eno kont shoft el 7eta deh fe ketab 3an el HTTP bas nesetha .......Zanks Zikas Again
  • A Uniform Resource Name (URN) functions like a person's name, while a Uniform Resource Locator (URL) resembles that person's street address. The URN defines an item's identity, while the URL provides a method for finding it. The ISBN system for uniquely identifying books provides a typical example of the use of typical URNs. ISBN 0486275574 (urn:isbn:0-486-27557-4) cites unambiguously a specific edition of Shakespeare's play Romeo and Juliet. In order to gain access to this object and read the book, one would need its location: a URL address. A typical URL for this book on a unix-like operating system might look like the file path file:///home/username/RomeoAndJuliet.pdf, identifying the electronic book saved in a local hard disk. So URNs and URLs have complementary purposes.
Abdelrahman Ogail

Genetic algorithm - Wikipedia, the free encyclopedia - 0 views

  • A genetic algorithm (GA) is a search technique used in computing to find exact or approximate solutions to optimization and search problems. Genetic algorithms are categorized as global search heuristics. Genetic algorithms are a particular class of evolutionary algorithms (EA) that use techniques inspired by evolutionary biology such as inheritance, mutation, selection, and crossover (also called recombination).
  • A typical genetic algorithm requires: a genetic representation of the solution domain, a fitness function to evaluate the solution domain.
  •  
    GE are primary used in Learning in AI
1 - 20 of 27 Next ›
Showing 20 items per page