Skip to main content

Home/ Computer Science Knowledge Sharing/ Group items tagged Genetic-Algorithms

Rss Feed Group items tagged

Abdelrahman Ogail

Genetic algorithm - Wikipedia, the free encyclopedia - 0 views

  • A genetic algorithm (GA) is a search technique used in computing to find exact or approximate solutions to optimization and search problems. Genetic algorithms are categorized as global search heuristics. Genetic algorithms are a particular class of evolutionary algorithms (EA) that use techniques inspired by evolutionary biology such as inheritance, mutation, selection, and crossover (also called recombination).
  • A typical genetic algorithm requires: a genetic representation of the solution domain, a fitness function to evaluate the solution domain.
  •  
    GE are primary used in Learning in AI
Abdelrahman Ogail

Genetic programming - Wikipedia, the free encyclopedia - 0 views

  • In artificial intelligence, genetic programming (GP) is an evolutionary algorithm-based methodology inspired by biological evolution to find computer programs that perform a user-defined task. It is a specialization of genetic algorithms (GA) where each individual is a computer program. Therefore it is a machine learning technique used to optimize a population of computer programs according to a fitness landscape determined by a program's ability to perform a given computational task.
  • In artificial intelligence, genetic programming (GP) is an evolutionary algorithm-based methodology inspired by biological evolution to find computer programs that perform a user-defined task. It is a specialization of genetic algorithms (GA) where each individual is a computer program. Therefore it is a machine learning technique used to optimize a population of computer programs according to a fitness landscape determined by a program's ability to perform a given computational task.
Abdelrahman Ogail

Stochastic optimization - Wikipedia, the free encyclopedia - 0 views

  • Stochastic optimization (SO) methods are optimization algorithms which incorporate probabilistic (random) elements, either in the problem data (the objective function, the constraints, etc.), or in the algorithm itself (through random parameter values, random choices, etc.), or in both [1]. The concept contrasts with the deterministic optimization methods, where the values of the objective function are assumed to be exact, and the computation is completely determined by the values sampled so far.
  •  
    In Artificial Intelligence, Genetic Algorithms belongs to class Stochastic search that is explained below
Abdelrahman Ogail

Hill climbing - Wikipedia, the free encyclopedia - 0 views

  • In computer science, hill climbing is a mathematical optimization technique which belongs to the family of local search. It is relatively simple to implement, making it a popular first choice. Although more advanced algorithms may give better results, in some situations hill climbing works just as well. Hill climbing can be used to solve problems that have many solutions, some of which are better than others. It starts with a random (potentially poor) solution, and iteratively makes small changes to the solution, each time improving it a little. When the algorithm cannot see any improvement anymore, it terminates. Ideally, at that point the current solution is close to optimal, but it is not guaranteed that hill climbing will ever come close to the optimal solution. For example, hill climbing can be applied to the traveling salesman problem. It is easy to find a solution that visits all the cities but will be very poor compared to the optimal solution. The algorithm starts with such a solution and makes small improvements to it, such as switching the order in which two cities are visited. Eventually, a much better route is obtained. Hill climbing is used widely in artificial intelligence, for reaching a goal state from a starting node. Choice of next node and starting node can be varied to give a list of related algorithms.
1 - 4 of 4
Showing 20 items per page