Skip to main content

Home/ Advanced Concepts Team/ Group items tagged harvesting

Rss Feed Group items tagged

Thijs Versloot

A microwave metamaterial with integrated power harvesting functionality - 3 views

  •  
    We present the design and experimental implementation of a power harvesting metamaterial. A maximum of 36.8% of the incident power from a 900 MHz signal is experimentally rectified by an array of metamaterial unit cells. We demonstrate that the maximum harvested power occurs for a resistive load close to 70 Ω in both simulation and experiment.
Nina Nadine Ridder

Material could harvest sunlight by day, release heat on demand hours or days later - 5 views

  •  
    Imagine if your clothing could, on demand, release just enough heat to keep you warm and cozy, allowing you to dial back on your thermostat settings and stay comfortable in a cooler room. Or, picture a car windshield that stores the sun's energy and then releases it as a burst of heat to melt away a layer of ice.
  •  
    interesting indeed: Such chemically-based storage materials, known as solar thermal fuels (STF), have been developed before, including in previous work by Grossman and his team. But those earlier efforts "had limited utility in solid-state applications" because they were designed to be used in liquid solutions and not capable of making durable solid-state films, Zhitomirsky says. The new approach is the first based on a solid-state material, in this case a polymer, and the first based on inexpensive materials and widespread manufacturing technology. Read more at: http://phys.org/news/2016-01-material-harvest-sunlight-day-demand.html#jCp
Alexander Wittig

Nature Today | First tomatoes and peas harvested on Mars and moon soil simulant - 2 views

  •  
    Researchers from Alterra Wageningen UR were able to grow and harvest ten different crop species on Mars and moon simulant. 'The total above ground biomass produced on the Mars soil simulant was not significantly different from the potting compost we used as a control' researcher Wieger Wamelink said. I wonder if the taste was as disappointing as that of normal dutch veggies :P
Lionel Jacques

Artificial energy harvesting tree - 1 views

shared by Lionel Jacques on 11 Jan 12 - Cached
LeopoldS liked it
  •  
    The idea has been around for already some time (2008) but I like it despite the challenges/trade-off: visible vs IR photovoltaics, black leaves would be better... Piezo + classical PV would already be great... Optimizing the leave shape & distribution for both wind and sun energy harvesting could be interesting...
santecarloni

Graphene Battery Turns Ambient Heat Into Electric Current - Technology Review - 0 views

  •  
    "Physicists have built a graphene battery that harvests energy from the thermal movement of ions in solution." Can it actually work?
Beniamino Abis

Fresh Food in Space - 0 views

  •  
    This December, NASA plans to launch a set of packs, filled with a material akin to kitty litter, functioning as planters for six romaine lettuce plants. The lettuce will be grown under bright-pink LED lights, ready to harvest after just 28 days. Once harvested, it will be frozen and stored away for testing back on Earth. No one is allowed to eat anything before the plants are thoroughly vetted for cosmic microbes.
Athanasia Nikolaou

Harvesting the plastic scattered in the ocean - 2 views

  •  
    Plastic needs a timescale of millenia to dissolve in the ocean and in the meantime it is accumulated in the water due to systematic dumping of garbage in the ocean since decades. Deploying buoyant devices at the location of the gyres (permanent circular currents in the ocean) is proposed for collecting the thin particles. The ambitious concept was developped by a Delft student, presented at a TEDx (see link), made a feasibility study through crowdfunding and now announces a public contest for developing mechanical parts of the harvesting system.
Chritos Vezyri

New fabrication technique could provide breakthrough for solar energy systems - 3 views

  •  
    The principle behind that is Nantenna.
  •  
    this is fantastic!!!! waiting of somebody to make this happen since years The size of the gap is critical because it creates an ultra-fast tunnel junction between the rectenna's two electrodes, allowing a maximum transfer of electricity. The nanosized gap gives energized electrons on the rectenna just enough time to tunnel to the opposite electrode before their electrical current reverses and they try to go back. The triangular tip of the rectenna makes it hard for the electrons to reverse direction, thus capturing the energy and rectifying it to a unidirectional current. Impressively, the rectennas, because of their extremely small and fast tunnel diodes, are capable of converting solar radiation in the infrared region through the extremely fast and short wavelengths of visible light - something that has never been accomplished before. Silicon solar panels, by comparison, have a single band gap which, loosely speaking, allows the panel to convert electromagnetic radiation efficiently at only one small portion of the solar spectrum. The rectenna devices don't rely on a band gap and may be tuned to harvest light over the whole solar spectrum, creating maximum efficiency. Through atomic layer deposition, Willis has shown he is able to precisely coat the tip of the rectenna with layers of individual copper atoms until a gap of about 1.5 nanometers is achieved. The process is self-limiting and stops at 1.5 nanometer separation The size of the gap is critical because it creates an ultra-fast tunnel junction between the rectenna's two electrodes, allowing a maximum transfer of electricity. The nanosized gap gives energized electrons on the rectenna just enough time to tunnel to the opposite electrode before their electrical current reverses and they try to go back. The triangular tip of the rectenna makes it hard for the electrons to reverse direction, thus capturing the energy and rectifying it to a unidirectional current. Impressively, the rectennas, because of th
LeopoldS

OhGizmo! » Archive » [CES 2010] RCA Airnergy Charger Harvests Electricity F... - 3 views

  •  
    this is what I call wireless power transmission really applied ...!
  •  
    this is amazing !
dejanpetkow

Polymers with very strong Piezoelectric effect discovered - 0 views

  •  
    Harvesting vibrational energy?
Tom Gheysens

Quantum biology: Algae evolved to switch quantum coherence on and off -- ScienceDaily - 3 views

  •  
    Scientists have discovered how algae that survive in very low levels of light are able to switch on and off a weird quantum phenomenon that occurs during photosynthesis. The function in the algae of this quantum effect, known as coherence, remains a mystery, but it is thought it could help them harvest energy from the sun much more efficiently. Working out its role in a living organism could lead to advances such as better organic solar cells.
  •  
    very very nice! we tried already a few years back to find an angle to see how we could study quantum phenomena occuring in plants and photosynthsis is one of the great examples since somehow plants manage to make the phenomena work for them at elevated temperatures, a feat in itself ... any good idea most welcome!!!
  •  
    Anna maybe? Joe?
LeopoldS

NIAC 2014 Phase I Selections | NASA - 4 views

  •  
    12 new NIAC 1 studies - many topics familiar to us ... please have a look at those closest to your expertise to see if there is anything new/worth investigating (and in general to be knowledgeable on them since we will get questions sooner or later on them)
    Principal Investigator Proposal Title Organization City, State, Zip Code
    Atchison, Justin Swarm Flyby Gravimetry Johns Hopkins University Baltimore, MD 21218-2680
    Boland, Eugene Mars Ecopoiesis Test Bed Techshot, Inc. Greenville, IN 47124-9515
    Cash, Webster The Aragoscope: Ultra-High Resolution Optics at Low Cost University of Colorado Boulder, CO 80309-0389
    Chen, Bin 3D Photocatalytic Air Processor for Dramatic Reduction of Life Support Mass & Complexity NASA ARC Moffett Field, CA 94035-0000
    Hoyt, Robert WRANGLER: Capture and De-Spin of Asteroids and Space Debris Tethers Unlimited Bothel, WA 98011-8808
    Matthies, Larry Titan Aerial Daughtercraft NASA JPL Pasadena, CA 91109-8001
    Miller, Timothy Using the Hottest Particles in the Universe to Probe Icy Solar System Worlds John Hopkins University Laurel, MD 20723-6005
    Nosanov, Jeffrey PERISCOPE: PERIapsis Subsurface Cave OPtical Explorer NASA JPL Pasadena, CA 91109-8001
    Oleson, Steven Titan Submarine: Exploring the Depths of Kraken NASA GRC Cleveland, OH 44135-3127
    Ono, Masahiro Comet Hitchhiker: Harvesting Kinetic Energy from Small Bodies to Enable Fast and Low-Cost Deep Space Exploration NASA JPL Pasadena, CA 91109-8001
    Streetman, Brett Exploration Architecture with Quantum Inertial Gravimetry and In Situ ChipSat Sensors Draper Laboratory Cambridge, MA 02139-3539
    Wiegmann, Bruce Heliopause Electrostatic Rapid Transit System (HERTS) NASA MSFC Huntsville, AL 35812-0000
  •  
    Eh, the swarm flyby gravimetry is very similar to the "measuring gravitational fields" project I proposed in the brewery
Daniel Hennes

NASA Funds Electricity-Harvesting Robotic Space Eel With Explosive Jet Thrusters and El... - 3 views

  •  
    This concept for a "soft-robotic rover with electrodynamic power scavenging" comes from Cornell University, and NASA has awarded it a grant under the NASA Innovative Advanced Concepts (NIAC) program to hoist itself up from TRL 1 to TRL 2.
jaihobah

Black Hole Power: How String Theory Idea Could Lead to New Thermal-Energy Harvesting Te... - 0 views

  •  
    A new class of exotic materials could find its way into next-generation technologies that efficiently convert waste heat into electrical current according to new research. Both the exotic materials and the means by which they generate electricity rely on a hybrid of advanced concepts-including string theory combined with black holes combined with cutting-edge condensed matter physics.
  •  
    Sounds spooky
johannessimon81

Asteroid mining could lead to self-sustaining space stations - VIDEO!!! - 5 views

  •  
    Let's all start up some crazy space companies together: harvest hydrogen on Jupiter, trap black holes as unlimited energy supplies, use high temperatures close to the sun to bake bread! Apparently it is really easy to do just about anything and Deep Space Industries is really good at it. Plus: in their video they show Mars One concepts while referring to ESA and NASA.
  • ...3 more comments...
  •  
    I really wonder what they wanna mine out there? Is there such a high demand on... rocks?! And do they really think they can collect fuel somewhere?
  •  
    Well they want to avoid having to send resources into space and rather make it all in space. The first mission is just to find possible asteroids worth mining and bring some asteroid rocks to Earth for analysis. In 2020 they want to start mining for precious metals (e.g. nickel), water and such.They also want to put up a 3D printer in space so that it would extract, separate and/or fuse asteroidal resources together and then print the needed structures already in space. And even though on earth it's just rocks, in space a tonne of them has an estimated value of 1 million dollars (as opposed to 4000 USD on Earth). Although I like the idea, I would put DSI in the same basket as those Mars One nutters 'cause it's not gonna happen.
  •  
    I will get excited once they demonstrate they can put a random rock into their machine and out comes a bicycle (then the obvious next step is a space station).
  •  
    hmm aside from the technological feasibility, their approach still should be taken as an example, and deserve a little support. By tackling such difficult problems, they will devise innovative stuffs. Plus, even if this doom-to-fail endeavour may still seem you useless, it creates jobs and make people think... it is already a positive! Final word: how is that different from what Planetary Resources plan to do? It is founded by a bunch of so-called "nuts" ... (http://www.planetaryresources.com/team/) ! a little thought: "We must never be afraid to go too far, for success lies just beyond" - Proust
  •  
    I don't think that this proposal is very different from the one by Planetary Resources. My scepticism is rooted in the fact that - at least to my knowledge - fully autonomous mining technology has not even been demonstrated on Earth. I am sure that their proposition is in principle (technically) feasible but at the same time I do not believe that a privately funded company will find enough people to finance a multi-billion dollar R&D project that may or may not lead to an economically sensible outcome, i.e. generate profit (not income - you have to pay back the R&D cost first) within the next 25 years. And on that timescale anything can happen - for all we know we will all be slaves to the singularity by the time they start mining. I do think that people who tackle difficult problems deserve support - and lots of it. It seems however that up till now they have only tackled making a promotional video... About job creation (sorry for the sarcasm): if usefulness is not so important my proposal would be to give shovels to two people - person A digs a hole and person B fills up the same hole at the same time. The good thing about this is that you can increase the number of jobs created simply by handing out more shovels.
jcunha

High-performance shape-engineerable thermoelectric painting - 0 views

  •  
    Thermoelectric paint allows for harvesting of thermal losses.
aborgg

Carbon-rich nanorods harvest water from the air - 0 views

  •  
    Nanometre-sized rods of carbon can expel water in puffs of vapour when the air is already humid. Materials such as carbon and silica gels typically pick up moisture as humidity increases. But Satish Nune and his colleagues at the Pacific Northwest National Laboratory in Richland, Washington, found that their carbon-based nanorods take up water at low humidity and then give off about half of it when the relative humidity exceeds 50-80%. The team thinks that water condenses between adjacent rods and then capillary forces draw the rods together until the water bursts from the ends of the rods and evaporates.
Lionel Jacques

Solar energy-harvesting "nanotrees" could produce hydrogen fuel on a mass scale - 1 views

  •  
    "... they are looking to use the nanotree structure to mimic photosynthesis in a device that not only harnesses the power of the sun to produce hydrogen fuel, but also captures CO2 from the atmosphere to reduce carbon emissions at the same time."
1 - 20 of 37 Next ›
Showing 20 items per page