Skip to main content

Home/ About The Indian Ocean/ Group items tagged algorithme

Rss Feed Group items tagged

Jérôme OLLIER

Estimation of Chlorophyll-a in Northern Coastal Bay of Bengal Using Landsat-8 OLI and S... - 0 views

  •  
    Chlorophyll-a can be used as a proxy for phytoplankton and thus is an essential water quality parameter. The presence of phytoplankton in the ocean causes selective absorption of light by chlorophyll-a pigment resulting in change of the ocean color that can be identified by ocean color remote sensing. The accuracy of chlorophyll-a concentration (Chl-a) estimated from remote sensing sensors depends on the bio-optical algorithm used for the retrieval in specific regional waters. In this work, it is attempted to estimate Chl-a from two currently active satellite sensors with relatively good spatial resolutions considering ocean applications. Suitability of two standard bio-optical Ocean Color (OC) Chlorophyll algorithms, OC-2 (2-band) and OC-3 (3-band) in estimating Chl-a for turbid waters of the northern coastal Bay of Bengal is assessed. Validation with in-situ data showed that OC-2 algorithm gives an estimate of Chl-a with a better correlation of 0.795 and least bias of 0.35 mg/m3. Further, inter-comparison of Chl-a retrieved from the two sensors, Landsat-8 OLI and Sentinel-2 MSI was also carried out. The variability of Chl-a during winter, pre-monsoon, and post-monsoon seasons over the study region were inter-compared. It is observed that during pre-monsoon and post-monsoon seasons, Chl-a from MSI is over estimated compared to OLI. This work is a preliminary step toward estimation of Chl-a in the coastal oceans utilizing available better spatially resolved sensors.
Jérôme OLLIER

A regional map of mangrove extent for Myanmar, Thailand, and Cambodia shows losses of 4... - 0 views

  •  
    Southeast Asia is home to some of the planet's most carbon-dense and biodiverse mangrove ecosystems. There is still much uncertainty with regards to the timing and magnitude of changes in mangrove cover over the past 50 years. While there are several regional to global maps of mangrove extent in Southeast Asia over the past two decades, data prior to the mid-1990s is limited due to the scarcity of Earth Observation (EO) data of sufficient quality and the historical limitations to publicly available EO. Due to this literature gap and research demand in Southeast Asia, we conducted a classification of mangrove extent using Landsat 1-2 MSS Tier 2 data from 1972 to 1977 for three Southeast Asian countries: Myanmar, Thailand, and Cambodia. Mangrove extent land cover maps were generated using a Random Forest machine learning algorithm that effectively mapped a total of 15,420.51 km2. Accuracy assessments indicated that the classification for the mangrove and non-mangrove class had a producer's accuracy of 80% and 98% user's accuracy of 90% and 96%, and an overall accuracy of 95%. We found a decline of 6,830 km2 between the 1970s and 2020, showing that 44% of the mangrove area in these countries has been lost in the past 48 years. Most of this loss occurred between the 1970s and 1996; rates of deforestation declined dramatically after 1996. This study also elaborated on the nature of mangrove change within the context of the social and political ecology of each case study country. We urge the remote sensing community to empathetically consider the local need of those who depend on mangrove resources when discussing mangrove loss drivers.
Jérôme OLLIER

Reconstruction of dissolved oxygen in the Indian Ocean from 1980 to 2019 based on machi... - 0 views

  •  
    Oceanic dissolved oxygen (DO) decline in the Indian Ocean has profound implications for Earth's climate and human habitation in Eurasia and Africa. Owing to sparse observations, there is little research on DO variations, regional comparisons, and its relationship with marine environmental changes in the entire Indian Ocean. In this study, we applied different machine learning algorithms to fit regression models between measured DO, ocean reanalysis physical variables, and spatiotemporal variables. We utilized the Extremely Randomized Trees (ERT) model with the best performance, inputting complete reanalysis data and spatiotemporal information to reconstruct a four-dimensional DO dataset of the Indian Ocean during 1980-2019. The evaluation results showed that the ERT-based DO dataset was superior to the DO simulations in Earth System Models across different time and space. Furthermore, we assessed the spatiotemporal variations in reconstructed DO dataset. DO decline and oxygen-minimum zone (OMZ) expansion were prominent in the Arabian Sea, Bay of Bengal, and Equatorial Indian Ocean. Through correlation analysis, we found that temperature and salinity changes related to solubility primarily control the oxygen decrease in the middle and deep sea. However, the complicated factors with solubility change, vertical mixing, and circulation govern the oxygen increase in the upper and middle sea. Finally, we conducted a volume integral to estimate the oxygen content in the Indian Ocean. Overall, a deoxygenation trend of −141.5 ± 15.1 Tmol dec−1 was estimated over four decades, with a slowdown trend of −68.9 ± 31.3 Tmol dec−1 after 2000. Under global warming and climate change, OMZ expanding and deoxygenation in the Indian Ocean are gradually mitigating. This study enhances our understanding of DO dynamics of the Indian Ocean in response to deoxygenation.
Jérôme OLLIER

Meet the WA scientists racing to stop fatal shark attacks - news.com.au - 0 views

  •  
    Meet the WA scientists racing to stop fatal shark attacks.
1 - 4 of 4
Showing 20 items per page