Skip to main content

Home/ About The Indian Ocean/ Group items tagged acide

Rss Feed Group items tagged

Jérôme OLLIER

Oil, acid, plastic: Inside the shipping disaster gripping Sri Lanka - @UNEP - 0 views

  •  
    It's visible in satellite images from just off Sri Lanka's coast: a thin grey film that snakes three kilometres out to sea before disappearing into the waves.
Jérôme OLLIER

Soluble Iodine Speciation in Marine Aerosols Across the Indian and Pacific Ocean Basins... - 0 views

  •  
    Iodine affects the radiative budget and the oxidative capacity of the atmosphere and is consequently involved in important climate feedbacks. A fraction of the iodine emitted by oceans ends up in aerosols, where complex halogen chemistry regulates the recycling of iodine to the gas-phase where it effectively destroys ozone. The iodine speciation and major ion composition of aerosol samples collected during four cruises in the East and West Pacific and Indian Oceans was studied to understand the influences on iodine's gas-aerosol phase recycling. A significant inverse relationship exists between iodide (I-) and iodate (IO3-) proportions in both fine and coarse mode aerosols, with a relatively constant soluble organic iodine (SOI) fraction of 19.8% (median) for fine and coarse mode samples of all cruises combined. Consistent with previous work on the Atlantic Ocean, this work further provides observational support that IO3- reduction is attributed to aerosol acidity, which is associated to smaller aerosol particles and air masses that have been influenced by anthropogenic emissions. Significant correlations are found between SOI and I-, which supports hypotheses that SOI may be a source for I-. This data contributes to a growing observational dataset on aerosol iodine speciation and provides evidence for relatively constant proportions of iodine species in unpolluted marine aerosols. Future development in our understanding of iodine speciation depends on aerosol pH measurements and unravelling the complex composition of SOI in aerosols.
Jérôme OLLIER

Vertical heterogeneity of hydrocarbon-degrading bacteria in a core sediment sample from... - 0 views

  •  
    Hydrocarbons are ubiquitous in marine environments and might fuel hydrocarbon-metabolizing microbes in the ocean. Numerous studies have documented microbial hydrocarbon degradation in water columns and deep-sea surface sediment. However, the degradation potential and biogeochemical cycling of hydrocarbons in subsurface sediments remain largely unknown. In this study, we used two different hydrocarbons, n-hexadecane (HEX) and methylcyclohexane (MCH), to investigate the distribution and diversity of hydrocarbon-consuming bacteria in a core sediment sample from the Central Indian Ridge (CIR), which is adjacent to mid-ridge hydrothermal vents in the Indian Ocean. We observed different vertical profiles of HEX- and MCH-degrading bacteria in the core sediments. Specifically, HEX-degrading bacteria were universally distributed, while MCH-degrading bacteria were found only in the intermediate layers of the core sediments. Changing factors including dissolved oxygen might affect the natural distribution of different hydrocarbon consumers. We found that a novel species of the genus C1-B045 might play a pivotal role in metabolizing MCH in the CIR deep biosphere. Through amino acid identity comparison with published sequences, we determined that C1-B045 harbors two novel classes of cyclohexanone monooxygenases involved in MCH metabolism. This study sheds light on the structure and function of hydrocarbon-consuming microbes in deep biospheres.
Jérôme OLLIER

Via @HealTheBay - The Seashell Trade for Souvenirs is Killing Protected Marine Life - @... - 0 views

  •  
    The Seashell Trade for Souvenirs is Killing Protected Marine Life.
Jérôme OLLIER

The mysterious beast of Ningaloo Reef: revealing the secrets of whale sharks - @CSIROnews - 0 views

  •  
    Whale sharks are the largest fish in the sea but much of their behaviour is still unknown. In a world-first, we'll be attempting to hit the marine jackpot and determine how old whale sharks are using DNA samples. We're also placing trackers on them to discover where in the ocean they travel and how deep below the surface they go from one of their favourite hangouts - Ningaloo Reef in Western Australia.
Jérôme OLLIER

Filter paper can reveal species under the sea - @CSIRO - 0 views

  •  
    A new study from Australia's national science agency, CSIRO, in waters off the Western Australian coast has showed floating a special kind of filter paper in seawater can reveal which species are present in an area.
Jérôme OLLIER

Via @WhySharksMatter - Distinct coral reef habitat communities characterized by environ... - 0 views

  •  
    Coral reefs are biodiversity hotspots, places of high endemicity and provide essential services to billions of people globally. With increasing threats to these reefs worldwide, there is a need to implement faster, more efficient ways to monitor spatial and temporal patterns of biodiversity. Environmental DNA (eDNA) metabarcoding offers a promising tool to address this issue, as it has revolutionized our ability to monitor biodiversity from complex environmental samples such as seawater. However, the capacity for eDNA to resolve fine scale shifts in community composition across habitats in seascapes is yet to be fully explored. Here, we applied eDNA metabarcoding using the rRNA 18S Universal eukaryote assay to explore differences in community profiles between samples collected from the lagoon and reef slope habitats across more than 170 km of the Ningaloo Coast World Heritage Area in Western Australia. We recovered 2061 amplicon sequence variants that comprised of 401 taxa spanning 14 different metazoan phyla such as cnidarians, poriferans, molluscs, algae, worms, and echinoderms. Our results revealed strong clustering of samples by habitat type across the length of the reef. Community dissimilarity (beta diversity) between samples collected from the reef slope and lagoon habitats was high and was driven largely by a strong rate of spatial turnover, indicating a distinct set of taxa representing each reef zone community. We also detected a strong pattern of isolation by distance within our slope samples, suggesting that communities are spatially stratified across the length of the reef. Despite high connectivity due to regular flushing of the lagoon environment, our results demonstrate that metabarcoding of seawater eDNA from different habitats can resolve fine scale community structure. By generating multi-trophic biodiversity data, our study also provided baseline data for Ningaloo from which future changes can be assessed.
Jérôme OLLIER

DNA Barcoding of Scavenging Amphipod Communities at Active and Inactive Hydrothermal Ve... - 0 views

  •  
    Hydrothermal vent areas have drawn increasing interest since they were discovered in 1977. Because of chemoautotrophic bacteria, they possess high abundances of vent endemic species as well as many non-vent species around the fields. During the survey conducted by the Bundesanstalt für Geowissenschaften und Rohstoffe (Federal Institute for Geosciences and Natural Resources, BGR) to identify inactive polymetallic sulfide deposits along Central and Southeast Indian Ridges, the INDEX project studied the scavenging amphipod community at three newly discovered hydrothermal fields. A sample consisting of 463 representatives of Amphipoda (Malacostraca: Crustacea) was collected by means of baited traps in active and inactive vents of three different sites and subsequently studied by both morphological and genetic methods. Molecular methods included the analysis of two mitochondrial (cytochrome c oxidase subunit I [COI] and 16S rRNA) and one nuclear (18S rRNA) genes. By six delimitation methods, 22 molecular operational taxonomic units (MOTUs) belonging to 12 genera and 10 families were defined. The existence of potential species complexes was noted for the representatives of the genus Paralicella. The inactive site, where 19 species were found, showed higher species richness than did the active one, where only 10 taxa were recorded. Seven genera, Ambasiopsis, Cleonardo, Eurythenes, Parandania, Pseudonesimus, Tectovalopsis, and Valettiopsis, were observed only at inactive sites, whereas Haptocallisoma, was collected exclusively at active ones. The species Abyssorchomene distinctus (BIRSTEIN and VINOGRADOV, 1960), Hirondellea brevicaudata Chevreux, 1910, and Hirondellea guyoti (BARNARD and INGRAM, 1990), have been previously reported from vent sites in the Atlantic or Pacific oceans. The present study provides the first report of Eurythenes magellanicus (H. Milne Edwards, 1848) and five other already described species in the Indian Ocean. The addition of 356 sequences strong
1 - 11 of 11
Showing 20 items per page