Seasonal Distribution of the Fin Whale (Balaenoptera physalus) in Antarctic and Austral... - 0 views
-
The fin whale is listed as globally vulnerable, with ongoing threats to their population, yet little is known about the distribution and movements of the Southern Hemisphere sub-species, Balaenoptera physalus quoyi. This study assesses fin whale distribution in the Southern Hemisphere analysing acoustic recordings from 15 locations in Antarctic and Australian waters from 2002 to 2019. A seasonal acoustic presence of fin whales in Antarctic waters from late austral summer to autumn (February to June) with long-term, consistent annual usage areas was identified at the Southern Kerguelen Plateau and Dumont d'Urville sites. In comparison, limited vocal presence of fin whales was observed at the Casey site. In Australian waters, fin whales were seasonally present from austral autumn to mid-spring (May to October) on east and west coasts, with a decadal pattern of acoustic presence observed at Cape Leeuwin, WA. Two migratory pathways are identified, from the Indian sector of Antarctica to the west coast of Australia and from the Pacific sector of Antarctica to the east coast of Australia. The identified seasonal distributions and migratory pathways provide valuable information to aid in monitoring the recovery of this vulnerable sub-species. We suggest the identified distribution and dispersal from the Southern Kerguelen Plateau and Dumont d'Urville sites to the west and east coasts of Australia respectively, as well as the spatial separation between Antarctic sites, provide preliminary evidence of separate sub-populations of the Southern Hemisphere sub-species of fin whale.
La Niña conditions influence interannual call detections of pygmy blue whales... - 0 views
-
Oceans across the globe are warming rapidly and marine ecosystems are changing as a result. However, there is a lack of information regarding how blue whales are responding to these changing environments, especially in the Southern Hemisphere. This is because long term data are needed to determine whether blue whales respond to variability in environmental conditions. Using over 16 years of passive acoustic data recorded at Cape Leeuwin, we investigated whether oceanic environmental drivers are correlated with the migration patterns of eastern Indian Ocean (EIO) pygmy blue whales off Western Australia. To determine which environmental variables may influence migration patterns, we modelled the number of acoustic call detections of EIO pygmy blue whale calls with broad and fine scale environmental variables. We found a positive correlation between total annual whale call detections and El Niño Southern Oscillation (ENSO) cycles and the Indian Ocean Dipole (IOD), with more whale calls detected during La Niña years. We also found that monthly whale call detections correlated with sea surface height around the hydrophone and chlorophyll-a concentration at a prominent blue whale feeding aggregation area (Bonney Upwelling) where whales feed during the summer before migrating up the west Australian coast. At the interannual scale, ENSO had a stronger relationship with call detections than IOD. During La Niña years, up to ten times more EIO pygmy blue whale calls were detected than in neutral or El Niño years. This is likely linked to changes in productivity in the feeding areas of the Great Australian Bight and Indian Ocean. We propose that in lower productivity years whales either skipped migration or altered their habitat use and moved further offshore from the hydrophones and therefore were not detected. The frequency and intensity of ENSO events are predicted to increase with climate change, which is likely to impact the productivity of the areas used by blue whale
1 - 8 of 8
Showing 20▼ items per page