Skip to main content

Home/ About The Indian Ocean/ Group items tagged golfe du Bengal

Rss Feed Group items tagged

Jérôme OLLIER

Seasonal Fishery Closure in the Northern Bay of Bengal Causes Immediate but Contrasting... - 0 views

  •  
    Bangladesh has introduced a monsoonal fishery closure in the Bay of Bengal to ensure the conservation of fish stocks and productive breeding grounds. While the fishing ban has likely supported this goal, it has also sparked protest and resentment among small-scale fishers. This study investigated fishers' perceptions of the 65-day fishing ban between May and July in the Bay of Bengal. We collected both qualitative and quantitative data from five coastal fishing communities. Data were analyzed to explore fishers' perceptions of the socioeconomic and ecological impacts of the closure. While most respondents agreed that the closure produced positive ecological outcomes, they felt that their income and food security had been negatively affected. Importantly, crew members perceived their losses to be more extreme than the boat skipper or owner due to their overreliance on the fishery and lack of alternative skills and occupations. These fishers cannot forfeit their livelihoods and food security needs, as they are already living on the margins of subsistence. This social ramification emphasizes the necessity of understanding the interconnection between fishers' socioeconomic conditions and conservation needs. Social-ecological trade-offs and inequalities raise the question of social equity and environmental justice, which could ultimately compromise management and conservation effectiveness and legitimacy. The involvement of local communities in the decision-making process for future fishery interventions could enhance both the livelihood opportunities and the positive ecological outcomes in the Bay of Bengal marine ecosystem.
Jérôme OLLIER

Via @MBSociety - Reviews and syntheses: Trends in primary production in the Bay of Ben... - 0 views

  •  
    Ocean primary production is the basis of the marine food web, sustaining life in the ocean via photosynthesis, and removing carbon dioxide from the atmosphere. Recently, a small but significant decrease in global marine primary production has been reported based on ocean color data, which was mostly ascribed to decreases in primary production in the northern Indian Ocean, particularly in the Bay of Bengal. Available reports on primary production from the Bay of Bengal (BoB) are limited, and due to their spatial and temporal variability difficult to interpret. Primary production in the BoB has historically been described to be driven by diatom and chlorophyte clades, while only more recent datasets also show an abundance of smaller cyanobacterial primary producers visually difficult to detect. The different character of the available datasets, i.e., direct counts, metagenomic and biogeochemical data, and satellite-based ocean color observations, make it difficult to derive a consistent pattern. However, making use of the most highly resolved dataset based on satellite imaging, a shift in community composition of primary producers is visible in the BoB over the last 2 decades. This shift is driven by a decrease in chlorophyte abundance and a coinciding increase in cyanobacterial abundance, despite stable concentrations of total chlorophyll. A similar but somewhat weaker trend is visible in the Arabian Sea, where satellite imaging points towards decreasing abundances of chlorophytes in the north and increasing abundances of cyanobacteria in the eastern parts. Statistical analysis indicated a correlation of this community change in the BoB to decreasing nitrate concentrations, which may provide an explanation for both the decrease in eukaryotic nitrate-dependent primary producers and the increase in small unicellular cyanobacteria related to Prochlorococcus, which have a comparably higher affinity to nitrate. Changes in community composition of primary producers and an
Jérôme OLLIER

NASA Sees Powerful Storms with Advancing Monsoon in Bay of Bengal - @NASA - 0 views

  •  
    Storms associated with the advancing monsoon in the Northern Indian Ocean's Bay of Bengal were analyzed by NASA with the GPM or Global Precipitation Measurement mission core satellite.
Jérôme OLLIER

Via @TerraMarProject - Run-off from fertilisers has made Bay of Bengal reach 'tipping p... - 0 views

  •  
    Run-off from fertilisers has made Bay of Bengal reach 'tipping point', say experts.
Jérôme OLLIER

Spatial data on dolphin bycatch will help steer fishing boats to lower risk areas - @IUCN - 0 views

  •  
    Preventing bycatch of threatened marine megafauna is a challenging task, writes Brian D. SMITH from the Wildlife Conservation Society (WCS), an SOS-Save Our Species grantee, in the Bay of Bengal, Bangladesh. Early one morning WCS researcher Rubaiyat Mansur received a phone call. It was from Sonjoy Kumar DASH, one of the gillnet fishing captains participating in … ↓ Read the rest of this entry...
  •  
    Preventing bycatch of threatened marine megafauna is a challenging task, writes Brian D. SMITH from the Wildlife Conservation Society (WCS), an SOS-Save Our Species grantee, in the Bay of Bengal, Bangladesh. Early one morning WCS researcher Rubaiyat Mansur received a phone call. It was from Sonjoy Kumar DASH, one of the gillnet fishing captains participating in … ↓ Read the rest of this entry...
Jérôme OLLIER

Estimation of Chlorophyll-a in Northern Coastal Bay of Bengal Using Landsat-8 OLI and S... - 0 views

  •  
    Chlorophyll-a can be used as a proxy for phytoplankton and thus is an essential water quality parameter. The presence of phytoplankton in the ocean causes selective absorption of light by chlorophyll-a pigment resulting in change of the ocean color that can be identified by ocean color remote sensing. The accuracy of chlorophyll-a concentration (Chl-a) estimated from remote sensing sensors depends on the bio-optical algorithm used for the retrieval in specific regional waters. In this work, it is attempted to estimate Chl-a from two currently active satellite sensors with relatively good spatial resolutions considering ocean applications. Suitability of two standard bio-optical Ocean Color (OC) Chlorophyll algorithms, OC-2 (2-band) and OC-3 (3-band) in estimating Chl-a for turbid waters of the northern coastal Bay of Bengal is assessed. Validation with in-situ data showed that OC-2 algorithm gives an estimate of Chl-a with a better correlation of 0.795 and least bias of 0.35 mg/m3. Further, inter-comparison of Chl-a retrieved from the two sensors, Landsat-8 OLI and Sentinel-2 MSI was also carried out. The variability of Chl-a during winter, pre-monsoon, and post-monsoon seasons over the study region were inter-compared. It is observed that during pre-monsoon and post-monsoon seasons, Chl-a from MSI is over estimated compared to OLI. This work is a preliminary step toward estimation of Chl-a in the coastal oceans utilizing available better spatially resolved sensors.
Jérôme OLLIER

#coronavirus - Aerosol Induced Changes in Sea Surface Temperature Over the Bay of Benga... - 0 views

  •  
    The role of COVID-19 pandemic lockdown in improving air quality was reported extensively for land regions globally. However, limited studies have explored these over oceanic areas close to high anthropogenic activities and emissions. The Bay of Bengal (BoB) basin is one such region adjacent to the highly populated South Asian region. We find that Aerosol Optical Depth (AOD) over the BoB declined by as much as 0.1 or 30% during the peak lockdown of April 2020 compared to long-term climatology during 2003-2019. Simultaneously, the sea surface temperature (SST) rose by 0.5-1.5°C over the central and north-western parts of the BoB with an average increase of 0.83°C. We show that up to 30% of this observed warming is attributable to reduced atmospheric aerosols. The study highlights the importance of anthropogenic emissions reduction due to COVID lockdown on short-term changes to SST over ocean basins with implications to regional weather.
Jérôme OLLIER

Benthic Foraminiferal Response to the Millennial-Scale Variations in Monsoon-Driven Pro... - 0 views

  •  
    In this study, we presented a high-resolution benthic foraminiferal assemblage record from the western Bay of Bengal (BoB) (off Krishna-Godavari Basin) showing millennial-scale variations during the last 45 ka. We studied temporal variations in benthic foraminiferal assemblages (relative abundances of ecologically sensitive groups/species, microhabitat categories, and morphogroups) to infer past changes in sea bottom environment and to understand how monsoon induced primary productivity-driven organic matter export flux and externally sourced deep-water masses impacted the deep-sea environment at the core site. Our records reveal a strong coupling between surface productivity and benthic environment on glacial/interglacial and millennial scale in concert with Northern Hemisphere climate events. Faunal data suggest a relatively oxic environment when the organic matter flux to the sea floor was low due to low primary production during intensified summer monsoon attributing surface water stratification and less nutrient availability in the mixed layer. Furthermore, records of oxygen-sensitive benthic taxa (low-oxygen vs. high-oxygen benthics) indicate that changes in deep-water circulation combined with the primary productivity-driven organic matter flux modulated the sea bottom oxygen condition over the last 45 ka. We suggest that the bottom water at the core site was well-ventilated during the Holocene (except for the period since 3 ka) compared with the late glacial period. At the millennial timescale, our faunal proxy records suggest relatively oxygen-poor condition at the sea floor during the intervals corresponding to the cold stadials and North Atlantic Heinrich events (H1, H2, H3, and H4) compared with the Dansgaard/Oeschger (D-O) warm interstadials. The study further reveals oxygen-poor bottom waters during the last glacial maximum (LGM, 19-22 ka) which is more pronounced during 21-22 ka. A major shift in sea bottom condition from an oxygenated bottom wa
Jérôme OLLIER

Deep groundwater in coastal deltas resilient to contamination - ‎@uclnews - 0 views

  •  
    Groundwater pumped from the depths of the coastal Bengal Basin supporting more than 80 million people is largely secure from contamination, according to new research by UCL and the British Geological Survey.
Jérôme OLLIER

Protection for high seas is crucial to safeguarding vulnerable coastal communities - @N... - 0 views

  •  
    Key areas of the Indian Ocean, Bay of Bengal and the Pacific should be designated protected areas in order to safeguard vulnerable coastal communities' livelihoods, new research published this week reveals.
Jérôme OLLIER

Reconstruction of daily chlorophyll-a concentrations in the transit of severe tropical ... - 0 views

  •  
    Tropical regions experience a diverse range of dense clouds, posing challenges for the daily reconstruction of chlorophyll-a concentration data. This underscores the pressing need for a practical method to reconstruct daily-scale chlorophyll-a concentrations in such regions. While traditional data reconstruction methods focus on single variables and rely on specific factors to infer missing data at specific locations, these single-variable methods may falter when applied to tropical oceans due to the scarcity of available data. Fortunately, all oceanographic variables undergo similar atmospheric and marine dynamic processes, creating internal relationships between them. This allows for the reconstruction of missing data through correlations between variables. Thus, this study introduces a multivariate reconstruction approach using the extended data interpolating empirical orthogonal function (ExDINEOF) method to reconstruct missing daily-scale chlorophyll-a concentration data. The ExDINEOF method considers the simultaneous relationships among multiple variables for data reconstruction in tropical oceans. To verify the method's robustness, missing data were reconstructed during the formation and passage of severe tropical cyclone Hudhud through the Bay of Bengal. The results demonstrate that ExDINEOF outperforms traditional data reconstruction methods, exhibiting favorable spatial distribution and enhanced accuracy within the dynamic tropical marine environment. Furthermore, an assessment of marine physical environmental factors associated with chlorophyll-a concentration data provides additional evidence for the ExDINEOF method's accuracy. Notably, the ExDINEOF method offers comprehensive spatial distribution aligned with underlying physical mechanisms governing phytoplankton distribution patterns, detailed phytoplankton growth, bloom, extinction variations in time series, satisfactory accuracy, and comprehensive local-level details.
Jérôme OLLIER

Processes controlling the distributions and cycling of dissolved aluminum and manganese... - 0 views

  •  
    Aluminum and manganese are both key parameters in the GEOTRACES program. Data on dissolved aluminum (dAl) and dissolved manganese (dMn) relative to their geochemical behavior remain limited in the northeastern Indian Ocean (IO; including the Bay of Bengal (BoB) and equatorial Indian Ocean (Eq. IO)). Seawater samples collected in the BoB and Eq. IO during the spring inter-monsoon period (7 March to 9 April) of 2017 were analyzed to investigate the behavior and main processes controlling the distributions of dAl and dMn in the northeastern IO. The average concentrations of dAl and dMn in the mixed layer of the BoB were 16.6 and 6.7 nM, respectively. A modified 1-D box-model equation was utilized to estimate the contributions of different sources to dAl and dMn in the mixed layer. Al released from the desorption of and/or dissolution of the lithogenic sediments discharged by the Ganga-Brahmaputra (G-B) river system predominantly controlled the dAl distributions in the mixed layer of the BoB, while the desorption from the lithogenic sediments only contributed approximately 13%-21% dMn. Additional dMn input from the advection of Andaman Sea water and photo-reduction-dissolution of particulate Mn(IV) contributed more than 60% dMn in the mixed layer of the BoB. dAl and dMn in the surface mixed layer of the Eq. IO were mainly affected by the mixing of dAl- and dMn-enriched BoB surface water and low-dAl, low-dMn southern Arabian Sea surface water. Considering water mass properties and dAl concentrations, the distributions of dAl in the intermediate water (750-1,500 m) of northeastern IO were controlled by the mixing of Red Sea Intermediate Water, Indonesian Intermediate Water, and intermediate water of the BoB. Different from dAl, the apparent oxygen utilization relationship with dMn concentrations indicated that the regeneration of lithogenic particles under hypoxic conditions played a more important role than the remineralization of settling organic particles in co
Jérôme OLLIER

Above and Below Water: Understanding Human Impact on the Bay of Bengal - @GEOMAR_en - 0 views

  •  
    SONNE Expedition SO305 Creates First Comprehensive Dataset on Biogeochemistry.
1 - 20 of 152 Next › Last »
Showing 20 items per page