Skip to main content

Home/ Aasemoon'z Cluster/ Group items matching ""control engineering"" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
Aasemoon =)

robots.net - Robots: Distributed Flight Array - 0 views

  • In its latest episode, the Robots Podcast interviews the lead researcher of the Distributed Flight Array and one of my colleagues at the ETH Zurich's IDSC, Raymond Oung. The Distributed Flight Array (DFA) is an aerial modular robot. Each individual module has a single, large propellor and a set of omniwheels to move around. Since a single propellor does not allow stable flight, modules move around to connect to each other. As shown in this video of the DFA, the resulting random shape then takes flight. After a few minutes of hovering the structure breaks up and modules fall back to the ground, restarting the cycle. As most projects at the IDSC, the DFA is grounded in rigorous mathematics and design principles and combines multiple goals: It serves as a real-world testbed for research in distributed estimation and control, it abstracts many of the real-world issues of the next generation of distributed multi-agent systems, and it provides an illustration for otherwise abstract concepts like distributed sensing and control to a general public. For more information on current work, future plans and real-world applications, read on or tune in!
Aasemoon =)

robots.net - Thought-Controlled Computers Progressing - 0 views

  • Researchers at CMU and Intel are attempting to map and understand human brain activity well enough that individual words can be detected. Currently, giant MRI machines are being used but the future holds smaller devices that can be worn like a helmet according to Dean Pomerleau, senior researcher at Intel. The efficiency and productivity of word detection will be superior to existing technology that allows an operator to simply control a cursor. This technology will no doubt make its way into robotic telepresence applications including remote surgery and construction in dangerous environments such as the ocean and space.
Aasemoon =)

Taking movies beyond Avatar - for under £100 - 1 views

  • A new development in virtual cameras at the University of Abertay Dundee is developing the pioneering work of James Cameron’s blockbuster Avatar using a Nintendo Wii-like motion controller – all for less than £100.Avatar, the highest-grossing film of all time, used several completely new filming techniques to bring to life its ultra-realistic 3D action. Now computer games researchers have found a way of taking those techniques further using home computers and motion controllers.James Cameron invented a new way of filming called Simul-cam, where the image recorded is processed in real-time before it reaches the director’s monitor screen. This allows actors in motion-capture suits to be instantly seen as the blue Na’vi characters, without days spent creating computer-generated images.
Aasemoon =)

Class-D audio amplifiers reduce design complexity in portable electronics | Audio DesignLine - 0 views

  • Analog Devices, Inc., has introduced a pair of Class-D audio amplifiers for smart phones, GPS units and other handheld electronics where premium sound quality offers a major competitive advantage. The SSM2375 and SSM2380 amplifiers provide audio system designers with the option of fixed or programmable gain settings combined with low noise and superior audio performance. The SSM2380 low-power, stereo Class-D amplifier is the first in its class to incorporate an I²C interface, which allows gain stages to be set from 1 dB to 24 dB (plus mute) in 47 distinct steps with no other external components required. The programmable interface also enables independent L/R channel shutdown, a variable low-EMI (electro-magnetic interference) emission control mode, and programmable ALC (automatic level control) functions for speaker protection. The SSM2380 achieves a 100-dB SNR (signal-to-noise ratio) and extends battery life by achieving 93 percent power efficiency at 5 V while running at 1.4 W into an 8-ohm speaker.
Aasemoon =)

What Is an Arduino Shield and Why Should My Netduino Care? | Coding4Fun Articles | Channel 9 - 0 views

  • When the Arduino Duemilanove microcontroller appeared in 2005, it featured a set of female pin headers exposing most of the pins of the ATmega168 for easy hacking and for connecting accessory boards known as 'Shields'. The purpose of a shield is to provide new plug-and-play functionality to the host microcontroller, such as circuit prototyping, motion control, sensor integration, network and radio communication, or gaming interfaces, without worrying too much about the hardware implementation details. Seven years after the birth of the original Arduino, new shields keep coming out and are being cataloged on http://shieldlist.org/, a testament to the versatility of the design. It is also simple to build a DIY shield when nothing out there will meet your needs or when you want to understand how the shield concept works from the ground up.
Aasemoon =)

Hitachi's Lovable EMIEW 2 Gets Upgraded! - 0 views

  • Remember Hitachi’s little helper robot, EMIEW 2 (Excellent Mobility and Interactive Existence as Work-mate)?  It’s been a couple of years since we heard anything regarding the project and we feared the worst.  Hitachi has put those fears to rest by holding a news conference to show off its new enhanced voice recognition and driving performance! Known primarily for its unique legs which have wheels for feet, EMIEW 2 can drive at up to 6km/h to keep pace with people.  If it needs to carry something it can kneel down (for added stability) and scoot around, and thanks to its bipedal legs it can step over obstacles that are too high to drive over.  Now it has been given adaptive suspension control technology which increases its stability when driving over bumpy terrain such as elevator doors.  During the press demonstration, EMIEW 2′s springy legs bobbed independently as it drove over cables and uneven flooring.
Aasemoon =)

IEEE Spectrum: Humanoid Robot Justin Learning To Fix Satellites - 1 views

  • Justin is a dexterous humanoid robot that can make coffee. Now it's learning to fix satellites. Justin was developed at the Institute of Robotics and Mechatronics, part of the German Aerospace Center (DLR), in Wessling, Germany. The robot has different configurations, including one with wheels. The space version has a head, torso, and arms, but no wheels or legs, because it will be mounted on a spacecraft or satellite. The goal is to use Justin to repair or refuel satellites that need to be serviced. Its creators say that ideally the robot would work autonomously. To replace a module or refuel, for example, you'd just press a button and the robot would do the rest. But that's a long-term goal. For now, the researchers are relying on another approach: robotic telepresence. A human operator controls the robot from Earth, using a head-mounted display and a kind of arm exoskeleton. That way the operator can see what the robot sees and also feel the forces the robot is experiencing.
Aasemoon =)

IEEE Spectrum: IBM Makes 3-Nanometer Nanowire Silicon Circuits - 0 views

  • A test circuit built with nanowires of silicon could point the way to much smaller transistors, say the IBM researchers who created it. Researchers from IBM’s Thomas J. Watson Research Center announced today at the annual Symposium on VLSI Technology, in Honolulu, that they have built a ring oscillator out of field-effect transistors (FETs) based on nanowires with diameters as small as 3 nanometers. The oscillator—is composed of 25 inverters using negative- and positive-channel FETs. The device, which demonstrated a delay of just 10 picoseconds per stage, shows that engineers can build a working circuit from transistors with much shorter channel lengths than today’s devices. Current flows through an FET’s channel under the control of the device’s gate. Scaling down the channel length will be critical if the dimensions of circuits on silicon chips are to continue to shrink, says Jeffrey Sleight, a senior technical staff member at IBM.
Aasemoon =)

Filter banks, part 2: Optimization and synthesis - 0 views

  • High Level Synthesis Architectural Optimization Basics In part 1 of this article we introduced basic filter bank theory and used the Synplify DSP High Level Synthesis (HLS) tool to implement an example filter bank into three alternative architectures. In part 2 we dive deeper into these three architectures to better understand how these filters work. We will also examine the HLS optimizations we applied and the resulting benefits. Example Filter Bank Review Before we proceed, let's quickly review our filter bank example. Our example, shown in Figure 1, is a size 16 DFT filter bank. The color scheme shows the sample rate change where a 16 MHz input sample rate (red) has been chosen and the output sample rate is downsampled by 16 (green).
Aasemoon =)

DARPA's ARM Robot Revealed - 1 views

  • It should be able to hold an inert grenade with one hand, and pull the pin with the other hand without the need for human control.  The software system must enable the robot to perform the Challenge Tasks following a high-level script with no operator intervention. For example, the operator would issue a command such as “Throw Ball.” That command would in turn decompose into a sequence of lower-level tasks, such as “find ball,” “grasp ball,” “re-grasp ball, cock arm, and throw.”
Aasemoon =)

SLAM, PID & ODOMETRY in Qbo robot | - 0 views

  • SLAM ( Simultaneous localization and mapping ),  PID ( Proportional integral derivative ) controller & ODOMETRY ( hodos, meaning “travel“, “journey” and metron, meaning “measure“)
Aasemoon =)

DNA-assisted solution processing for high-performance thin-film transistors - 0 views

  • Single-walled carbon nanotube (SWCNT)-based thin film transistors (TFTs) could be at the core of next-generation flexible electronics – displays, electronic circuits, sensors, memory chips, and other applications that are transitioning from rigid substrates, such as silicon and glass, to flexible substrates. What's holding back commercial applications is that industrial-type manufacturing of large scale SWCNT-based nanoelectronic devices isn't practical yet because controlling the morphology of single-walled carbon nanotubes is still causing headaches for materials engineers.
Aasemoon =)

STOMP Motion Planner | Willow Garage - 0 views

  • Robot motion planning has traditionally been used to avoid collisions when moving a robot arm. Avoiding collisions is important, but many other desirable criteria are often ignored. For example, motions that minimize energy will let the robot extend its battery life. Smoother trajectories may cause less wear on motors and can be more aesthetically appealing. There may be even more useful criteria, like keeping a glass of water upright when moving it around. This summer, Mrinal Kalakrishnan from the Computational Learning and Motor Control Lab at USC worked on a new motion planner called STOMP, which stands for "Stochastic Trajectory Optimization for Motion Planning". This planner can plan paths for high-dimensional robotic systems that are collision-free, smooth, and can simultaneously satisfy task constraints, minimize energy consumption, or optimize other arbitrary criteria. STOMP is derived from gradient-free optimization and path integral reinforcement learning techniques (Policy Improvement with Path Integrals, Theodorou et al, 2010).
Aasemoon =)

SRI International's Electroadhesive Robots - 0 views

  • Events such as natural disasters, military actions, and public safety threats have led to an increased need for robust robots — especially ones that can travel across complex terrain in any dimension. The ability to scale vertical building surfaces or other structures offers unique capabilities in military applications such as urban reconnaissance, sensor deployment, and setting up urban network nodes. SRI's novel clamping technology, called compliant electroadhesion, has enabled the first application of this technology to wall-climbing robots that can help with these situations.  As the name implies, electroadhesion is an electrically controllable adhesion technology. It involves inducing electrostatic charges on a wall substrate using a power supply connected to compliant pads situated on the moving robot. SRI has demonstrated robust clamping to common building materials including glass, wood, metal, concrete, etc. with clamping pressures in the range of 0.5 to 1.5 N per square cm of clamp (0.8 to 2.3 pounds per square inch). The technology works on conductive and non-conductive substrates, smooth or rough materials, and through dust and debris. Unlike conventional adhesives or dry adhesives, the electroadhesion can be modulated or turned off for mobility or cleaning. The technology uses a very small amount of power (on the order of 20 microwatts/Newton weight held) and shows the ability to repeatably clamp to wall substrates that are heavily covered in dust or other debris.
Aasemoon =)

Implementing the Viterbi algorithm in modern digital communications systems - 0 views

  • With the consumer demand for richer content and its resultant , increasing high data bandwidth continuing to drive communications systems, coding for error control has become extraordinarily important. One way to improve the bit error rate (BER), while maintaining high data reliability, is to use an error correction technique like the Viterbi algorithm. Originally conceived by Andrew Viterbi as an error-correction scheme for noisy digital communication, the Viterbi algorithm provides an efficient method for forward error correction (FEC) that improves channel reliability. Today, it is used in many digital communications systems in applications as diverse as CDMA and GSM digital cellular, dial-up modems, satellite, deep-space communications and 802.11 wireless LANs. It is also commonly used in speech recognition, keyword spotting and computational linguistics.
Aasemoon =)

TechOnline | Introduction to NI LabVIEW Robotics - 0 views

  • NI LabVIEW Robotics is a software package that provides a complete suite of tools to help you rapidly design sophisticated robotics systems for medical, agricultural, automotive, research, and military applications. The LabVIEW Robotics Software Bundle includes all of the functionality you need, from multicore real-time and FPGA design capabilities to vision, motion, control design, and simulation. Watch an introduction and demonstration of LabVIEW Robotics.
Aasemoon =)

Industry's Most Robust and Smallest Pin-Selectable DTE/DCE Multiprotocol Chipset | Your Electronics Open Source - 0 views

  • The MAX13171E along with the MAX13173E/ MAX13175E, form a complete pin-selectable data terminal equipment (DTE) or data communication equipment (DCE) interface port that support the V.28 (RS-232), V.10/V.11 (RS-449/V.36, RS-530, RS-530A, X.21), and V.35 protocols. The MAX13171E transceivers carry the high-speed clock and data signals, while the MAX13173E transceivers carry the control signals. The MAX13171E can be terminated by the MAX13175E pin-selectable resistor termination network. The MAX13175E contains six pin-selectable, multiprotocol cable termination networks.
Aasemoon =)

The 8-bit MCUs won't be going away anytime soon | Industrial Control Designline - 0 views

  • For the past 20 years, a debate over the longevity and legitimacy of the 8-bit microcontroller (MCU) periodically erupts. The debate is usually sparked by the introduction of a higher-end processor or architecture and is almost always accompanied by overstated claims of a market moving away from 8-bit MCUs or transitioning to higher-end devices. It wasn't too long ago that the 16-bit market was doomed to disappear, due to pressures from 8-bit on the low end and 32-bit at the high end.
Aasemoon =)

IEEE Spectrum: Japanese DIY Wooden Robotic Arm (Video) - 0 views

  • Pure craftsmanship. The fact that he can control all arm and grip movements with just two levers is really neat. Check out kinohaguruma's other creations too.

Aasemoon =)

IEEE Spectrum: Computer-Controlled Swarm of Bacteria Builds Tiny Pyramid - 2 views

  • Researchers at the NanoRobotics Laboratory of the École Polytechnique de Montréal, in Canada, are putting swarms of bacteria to work, using them to perform micro-manipulations and even propel microrobots. Led by Professor Sylvain Martel, the researchers want to use flagellated bacteria to carry drugs into tumors, act as sensing agents for detecting pathogens, and operate micro-factories that could perform pharmacological and genetic tests. They also want to use the bacteria as micro-workers for building things. Things like a tiny step pyramid. The video below shows some 5000 bacteria moving like a swarm of little fish, working together to transport tiny epoxy bricks and assemble a pyramidal structure -- all in 15 minutes. The video was presented at IROS last year, along with a wonderfully titled paper, "A Robotic Micro-Assembly Process Inspired By the Construction of the Ancient Pyramids and Relying on Several Thousands of Flagellated Bacteria Acting as Workers."
‹ Previous 21 - 40 of 47 Next ›
Showing 20 items per page