Skip to main content

Home/ Dr. Goodyear/ Group items tagged T-reg

Rss Feed Group items tagged

Nathan Goodyear

Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Dis... - 0 views

  • The gut microbiota participates in the body’s metabolism by affecting energy balance, glucose metabolism, and low-grade inflammation associated with obesity and related metabolic disorders
  • Firmicutes and Bacteroidetes represent the two largest phyla in the human and mouse microbiota and a shift in the ratio of these phyla has been associated with many disease conditions, including obesity
  • In obese humans, there is decreased abundance of Bacteroidetes compared to lean individuals
  • ...21 more annotations...
  • weight loss in obese individuals results in an increase in the abundance of Bacteroidetes
  • there is conflicting evidence on the composition of the obese microbiota phenotype with regards to Bacteroidetes and Firmicutes ratios
  • Bifidobacteria spp. from the phyla Actinobacteria, has been shown to be depleted in both obese mice and human subjects
  • While it is not yet clear which specific microbes are inducing or preventing obesity, evidence suggests that the microbiota is a factor.
  • targeted manipulation of the microbiota results in divergent metabolic outcomes depending on the composition of the diet
  • The microbiota has been linked to insulin resistance or type 2 diabetes (T2D) via metabolic syndrome and indeed the microbiota of individuals with T2D is also characterized by an increased Bacteroidetes/Firmicutes ratio, as well as an increase in Bacillus and Lactobacillus spp
  • It was also observed that the ratio of Bacteriodes-Prevotella to C. coccoides-E. rectale positively correlated with glucose levels but did not correlate with body mass index [80]. This suggests that the microbiota may influence T2D in conjunction with or independently of obesity
  • In humans, high-fat Western-style diets fed to individuals over one month can induce a 71% increase in plasma levels of endotoxins, suggesting that endotoxemia may develop in individuals with GI barrier dyfunction connected to dysbiosis
  • LPS increases macrophage infiltration essential for systemic inflammation preceding insulin resistance, LPS alone does not impair glucose metabolism
  • early treatment of dysbiosis may slow down or prevent the epidemic of metabolic diseases and hence the corresponding lethal cardiovascular consequences
  • increased Firmicutes and decreased Bacteroidetes, which is the microbial profile found in lean phenotypes, along with an increase in Bifidobacteria spp. and Lactobacillus spp
  • mouse and rat models of T1D have been shown to have microbiota marked by decreased diversity and decreased Lactobacillus spp., as well as a decrease in the Firmicutes/Bacteroidetes ratio
  • microbial antigens through the innate immune system are involved in T1D progression
  • The microbiota appears to be essential in maintaining the Th17/Treg cell balance in intestinal tissues, mesenteric and pancreatic lymph nodes, and in developing insulitis, although progression to overt diabetes has not been shown to be controlled by the microbiota
  • There is evidence that dietary and microbial antigens independently influence T1D
  • Lactobacillus johnsonii N6.2 protects BB-rats from T1D by mediating intestinal barrier function and inflammation [101,102] and a combination probiotic VSL#3 has been shown to attenuate insulitis and diabetes in NOD mice
  • breast fed infants have higher levels of Bifidobacteria spp. while formula fed infants have higher levels of Bacteroides spp., as well as increased Clostridium coccoides and Lactobacillus spp
  • the composition of the gut microbiota strongly correlates with diet
  • In mice fed a diet high in fat, there are many key gut population changes, such as the absence of gut barrier-protecting Bifidobacteria spp
  • diet has a dominating role in shaping gut microbiota and changing key populations may transform healthy gut microbiota into a disease-inducing entity
  • “Western” diet, which is high in sugar and fat, causes dysbiosis which affects both host GI tract metabolism and immune homeostasis
  •  
    Nice discussion of how diet, induces gut bacterial change, that leads to metabolic endotoxemia and disease.
‹ Previous 21 - 21 of 21
Showing 20 items per page