Skip to main content

Home/ Science Technology Society/ Group items tagged second

Rss Feed Group items tagged

thinkahol *

Control your home with thought alone | KurzweilAI - 0 views

  •  
    More than 50 severely disabled people in Second Life have been trying out a sophisticated new brain-computer interface (BCI) that lets users freely explore Second Life's virtual world and control their real-world environment. The system was developed by medical engineering company G.Tec of Schiedlberg, Austria as part of a pan-European project called Smart Homes for All. It's the first time the latest BCI technology has been combined with smart-home technology and online gaming. To activate a command, the user focuses their attention on the corresponding icon on a screen. Electroencephalograph (EEG) caps pick up brain signals, which are translated into commands to navigate and communicate within Second Life and Twitter. It can also be used to open and close doors, answer the phone, and control the TV, lights, thermostat, and intercom. G.Tec's system has been tested at the Santa Lucia Foundation Hospital in Rome, Italy.
thinkahol *

New laser technology could revolutionize communications | KurzweilAI - 0 views

  •  
    Engineers at Stevens Institute of Technology have developed a technique to optically modulate the frequency of a laser beam and create a signal that is disrupted significantly less by environmental factors, says Dr. Rainer Martini. The research provides for enhanced optical communications, allowing mobile units not tied to fiber optic cable to communicate in the range of 100 GHz and beyond, the equivalent of 100 gigabytes of data per second. Eventually, the team hopes to extend the reach into the terahertz spectrum. The frequency or amplitude modulation of middle infrared quantum cascade lasers has been limited by electronics, which are barely capable of accepting frequencies of up to 10 GHz by switching a signal on and off.  Marini and his team have developed a method to optically induce fast amplitude modulation in a quantum cascade laser to control the laser's intensity. Their amplitude modulation system employed a second laser to modulate the amplitude of the middle infrared laser, using light to control light. The current detector is only capable of detecting frequencies up to 10 GHz, but Dr. Martini is confident that a new detector will make the system capable of much higher frequencies. With an optical system that is stable enough, satellites may one day convert to laser technology, resulting in a more mobile military and super-sensitive scanners, as well as faster Internet for the masses, says Martini. Ref.: "Optically induced fast wavelength modulation in a quantum cascade laser," Applied Physics Letters, July 7, 2010.
thinkahol *

Stressed-DNA repair protein identified | KurzweilAI - 0 views

  •  
    Vera Gorbunova and Andrei Seluanov of the University of Rochester have found that human cells undergoing oxidative stress caused by environmental chemicals or routine cellular processes produce a protein (SIRT6) that stimulates cells to repair DNA double-strand breaks, thought to be associated with premature aging and cancer. The team first measured levels of SIRT6 in stressed cells, then treated a second group of stressed cells with a drug that deactivates the protein. DNA repair in the second group stopped, confirming SIRT6′s role.  The team also found that SIRT6 acts in concert with another protein, called PARP1, to make the repairs. Furthermore, the team found that increased levels of SIRT6 lead to faster DNA repair. They suspect that the protein acts as a "master regulator," coordinating stress and DNA repair activities. Ref.: Zhiyong Mao, Christopher Hine, Xiao Tian, Michael Van Meter, Matthew Au, Amita Vaidya, Andrei Seluanov, and Vera Gorbunova. SIRT6 Promotes DNA Repair Under Stress by Activating PARP1. Science 17 June 2011: 1443-1446. [DOI:10.1126/science.1202723]
Todd Suomela

Amateur Science and the Rise of Big Science | Citizen Scientists League - 0 views

  • Several trends came together to increase the professional nature of scientific work. First was the increasing cost of scientific work and its complexity. Scientific equipment became more precise and expensive. Telescopes, like those by Herschel, became bigger and bigger. Also, the amount of knowledge one needed to gain to contribute became increasingly daunting.
  • Second, the universities changed. Pioneered by the German states, which at the beginning of the 19th century was dismissed as a scientific backwater, universities began offering focused majors which trained students in a specific discipline rather than classical education as a whole. This was pioneered by Wilhelm von Humboldt, brother of the famous scientist Alexander von Humboldt, who was the Prussian Minister of Education.
  • Germany, once united, also provided impetus to two other trends that accelerated their dominance of science and the decline of amateurs. First, was the beginning of large-scale state sponsorship of science through grants which were first facilitated through the Kaiser Wilhelm Institute (now the Max Planck Institute). This eventually supplanted prizes as the dominant large-scale source of scientific funding. Countries like France that relied on prizes began to fall behind. Second, was the intimate cooperation between industrial firms like BASF and universities.
  • ...1 more annotation...
  • he final nail in the coffin was undoubtedly the Second World War. The massive mobilization of scientific resources needed to win and the discovery of war-winning inventions such as the atomic bomb and self-correcting bomb sight (with help from Norbert Wiener of MIT) convinced the nations of the world that the future was in large-scale funding and support of science as a continuous effort. Vannevar Bush, former president of MIT, and others pioneered the National Science Foundation and the military also invested heavily in its own research centers. Industrial labs such as those from Bell Labs, GE, Kodak, and others began dominating research as well. Interestingly, the first military investment in semiconductors coupled with research from Bell Labs led to what is now known as Silicon Valley.
Todd Suomela

Thatcher, Scientist - 0 views

  •  
    This paper has two halves. First, I piece together what we know about Margaret Thatcher's training and employment as a scientist. She took science subjects at school; she studied chemistry at Oxford, arriving during World War II and coming under the influence (and comment) of two excellent women scientists, Janet Vaughan and Dorothy Hodgkin. She did a fourth-year dissertation on X-ray crystallography of gramicidin just after the war. She then gathered four years' experience as a working industrial chemist, at British Xylonite Plastics and at Lyons. Second, my argument is that, having lived the life of a working research scientist, she had a quite different view of science from that of any other minister responsible for science. This is crucial in understanding her reaction to the proposals-associated with the Rothschild reforms of the early 1970s-to reinterpret aspects of science policy in market terms. Although she was strongly pressured by bodies such as the Royal Society to reaffirm the established place of science as a different kind of entity-one, at least at core, that was unsuitable to marketization-Thatcher took a different line.
Infogreen Global

Antihydrogen Atoms Stored for the First Time - 0 views

  •  
    Large quantities of antihydrogen atoms were first made at CERN eight years ago by two other teams. Although they made antimatter they couldn't store it, because the anti-atoms touched the ordinary-matter walls of the experiments within millionths of a second after forming and were instantly annihilated-completely destroyed by conversion to energy and other particles.
thinkahol *

The World's Technological Capacity to Store, Communicate, and Compute Information | Kur... - 0 views

  •  
    A study appearing Feb. 10 in Science Express calculates the world's total technological capacity to store, communicate and compute information, part of a Special Online Collection: Dealing with Data. The study by the USC Annenberg School for Communication & Journalism estimates that in 2007, humankind was able to store 2.9 × 1020 optimally compressed bytes, communicate almost 2 × 1021 bytes, and carry out 6.4 × 1018 instructions per second on general-purpose computers. General-purpose computing capacity grew at an annual rate of 58%. The world's capacity for bidirectional telecommunication grew at 28% per year, closely followed by the increase in globally stored information (23%). Humankind's capacity for unidirectional information diffusion through broadcasting channels has experienced comparatively modest annual growth (6%). Telecommunication has been dominated by digital technologies since 1990 (99.9% in digital format in 2007), and the majority of our technological memory has been in digital format since the early 2000s (94% digital in 2007).
thinkahol *

By Michel Chossudovsky - Professor of Economics, University of Ottawa and TFF associate... - 1 views

  •  
    The important debate on global warming under UN auspices provides but a partial picture of climate change; in addition to the devastating impacts of greenhouse gas emissions on the ozone layer, the World's climate can now be modified as part of a new generation of sophisticated "non-lethal weapons." Both the Americans and the Russians have developed capabilities to manipulate the World's climate. In the US, the technology is being perfected under the High-frequency Active Aural Research Program (HAARP) as part of the ("Star Wars") Strategic Defence Initiative (SDI). Recent scientific evidence suggests that HAARP is fully operational and has the ability of potentially triggering floods, droughts, hurricanes and earthquakes.
thinkahol *

‪Quantum Computers and Parallel Universes‬‏ - YouTube - 0 views

  •  
    Complete video at: http://fora.tv/2009/05/23/Marcus_Chown_in_Conversation_with_Fred_Watson Marcus Chown, author of Quantum Theory Cannot Hurt You: A Guide to the Universe, discusses the mechanics behind quantum computers, explaining that they function by having atoms exist in multiple places at once. He predicts that quantum computers will be produced within 20 years. ----- The two towering achievements of modern physics are quantum theory and Einsteins general theory of relativity. Together, they explain virtually everything about the world in which we live. But almost a century after their advent, most people havent the slightest clue what either is about. Radio astronomer, award-winning writer and broadcaster Marcus Chown talks to fellow stargazer Fred Watson about his book Quantum Theory Cannot Hurt You. - Australian Broadcasting Corporation Marcus Chown is an award-winning writer and broadcaster. Formerly a radio astronomer at the California Institute of Technology, he is now cosmology consultant of the weekly science magazine New Scientist. The Magic Furnace, Marcus' second book, was chosen in Japan as one of the Books of the Year by Asahi Shimbun. In the UK, the Daily Mail called it "a dizzy page-turner with all the narrative devices you'd expect to find in Harry Potter". His latest book is called Quantum Theory Cannot Hurt You.
Sergio Perez

SFT_preprint-EN_2_col.pdf - 0 views

  •  
    Unification theory with no extra dimensions. The first part unifies the strong nuclear force with the gravitational force in a mathematical way; the quantum vacuum is treated as a deformable system by the strong nuclear force. The second part unifies the nuclear force with the quantum vacuum in a hypothetical structure; the quantum vacuum is treated as a supersymmetric and metastable system with properties related to the different types of particles' motion.
Todd Suomela

The Bohr paradox - physicsworld.com - 0 views

  • Why? The best explanation I have heard is advanced by the physicist John H Marburger, who is currently science advisor to US President George Bush. By 1930, Marburger points out, physicists had found a perfectly adequate way of representing classical concepts within the quantum framework using Hilbert (infinite-dimensional) space. Quantum systems, he says, “live” in Hilbert space, and the concepts of position and momentum, for instance, are associated with different sets of coordinate axes that do not line up with each other, thereby resulting in the situation captured in ordinary-language terms by complementarity.“It’s a clear, logical and consistent way of framing the complementarity issue,” Marburger explained to me. “It clarifies how quantum phenomena are represented in alternative classical ‘pictures’, and it fits in beautifully with the rest of physics. The clarity of this scheme removes much of the mysticism surrounding complementarity. What happened was like a gestalt-switch, from a struggle to view microscopic nature from a classical point of view to an acceptance of the Hilbert-space picture, from which classical concepts emerged naturally. Bohr brokered that transition.”
  • In his book Niels Bohr’s Times, the physicist Abraham Pais captures a paradox in his subject’s legacy by quoting three conflicting assessments. Pais cites Max Born, of the first generation of quantum physics, and Werner Heisenberg, of the second, as saying that Bohr had a greater influence on physics and physicists than any other scientist. Yet Pais also reports a distinguished younger colleague asking with puzzlement and scepticism “What did Bohr really do?”.
Todd Suomela

PLoS ONE: A Demonstration of the Transition from Ready-to-Hand to Unready-to-Hand - 1 views

  • In Chapter III of Being and Time, Heidegger distinguishes three modes of experiencing the world. Most human activity, Heidegger argued, is absorbed, skillful engagement with entities in the world. When we are coping skillfully with the world, we experience entities around us as ready-to-hand.
  • Heidegger argues that skilled coping, when we engage with entities as ready-to-hand, is our primary way of engaging with the world. Sometimes, though, our skillful coping is temporarily disturbed. When this happens, we encounter entities as unready-to-hand. When we go from smoothly hammering to having difficulty, our experience of the previously ready-to-hand entities changes: we experience the hammer, nails and board as failing to serve their function appropriately.
  • Heidegger's third way of experiencing the world is as present-at-hand. The hammer is encountered as present-at-hand when we stop hammering and consider the hammer's shape or color or weight; when considered this way the hammer is no longer a useful tool but merely an object with various properties. Heidegger argued that readiness-to-hand is primary in two ways. First, the majority of our experience of the world is engaging with entities ready-to-hand. Second, readiness-to-hand is, from a phenomenological standpoint, ontologically primary while the other modes are derivative of it.
Todd Suomela

The Technium: Chosen, Inevitable, and Contingent - 0 views

  • There are two senses of "inevitable" when used with technology. In the first case, an invention merely has to exist once. In that sense, every technology is inevitable because sooner or later some mad tinkerer will cobble together almost anything that can be cobbled together. Jetpacks, underwater homes, glow-in-the-dark cats, forgetting pills — in the goodness of time every invention will inevitably be conjured up as a prototype or demo. And since simultaneous invention is the rule not the exception, any invention that can be invented will be invented more than once. But few will be widely adopted. Most won't work very well. Or more commonly they will work but be unwanted. So in this trivial sense, all technology is inevitable. Rewind the tape of time and it will be re-invented. The second more substantial sense of "inevitable" demands a level of common acceptance and viability. A technology's use must come to dominate the technium or at least its corner of the technosphere. But more than ubiquity, the inevitable must contain a large-scale momentum, and proceed on its own determination beyond the free choices of several billion humans. It can't be diverted by mere social whims.
buycashapp27

Buy Verified CashApp Accounts - BTC Enable Aged CashApp by buycashappusa - Issuu - 0 views

  •  
    If you're looking to buy a verified Cash App account, there are a few things you need to know. First, Cash App accounts can only be verified by the person who created them. So, if you're looking to buy a verified account from someone else, they'll need to provide you with their login information. Second, when you create a Cash App account, you'll need to provide your full name, date of birth, and Social Security number. Once your account is created, you'll be able to add a bank account or debit card and start using the app.
1 - 15 of 15
Showing 20 items per page