Skip to main content

Home/ Science Technology Society/ Group items tagged Cognitive

Rss Feed Group items tagged

Todd Suomela

Human Computer Interaction (HCI) by John M. Carroll - Interaction-Design.org: HCI, Usab... - 0 views

  • The challenge of personal computing became manifest at an opportune time. The broad project of cognitive science, which incorporated cognitive psychology, artificial intelligence, linguistics, cognitive anthropology, and the philosophy of mind, had formed at the end of the 1970s. Part of the programme of cognitive science was to articulate systematic and scientifically-informed applications to be known as "cognitive engineering". Thus, at just the point when personal computing presented the practical need for HCI, cognitive science presented people, concepts, skills, and a vision for addressing such needs. HCI was one of the first examples of cognitive engineering. Other historically fortuitous developments contributed to establishment of HCI. Software engineering, mired in unmanageable software complexity in the 1970s, was starting to focus on nonfunctional requirements, including usability and maintainability, and on non-linear software development processes that relied heavily on testing. Computer graphics and information retrieval had emerged in the 1970s, and rapidly came to recognize that interactive systems were the key to progressing beyond early achievements. All these threads of development in computer science pointed to the same conclusion: The way forward for computing entailed understanding and better empowering users.
  • One of the most significant achievements of HCI is its evolving model of the integration of science and practice. Initially this model was articulated as a reciprocal relation between cognitive science and cognitive engineering. Later, it ambitiously incorporated a diverse science foundation, notably Activity Theory, distributed cognition, and ethnomethodology, and a culturally embedded conception of human activity, including the activities of design and technology development. Currently, the model is incorporating design practices and research across a broad spectrum. In these developments, HCI provides a blueprint for a mutual relation between science and practice that is unprecedented.
  • In the latter 1980s and early 1990s, HCI assimilated ideas from Activity Theory, distributed cognition, and ethnomethodology. This comprised a fundamental epistemological realignment. For example, the representational theory of mind, a cornerstone of cognitive science, is no longer axiomatic for HCI science. Information processing psychology and laboratory user studies, once the kernel of HCI research, became important, but niche areas. The most canonical theory-base in HCI now is socio-cultural, Activity Theory. Field studies became typical, and eventually dominant as an empirical paradigm. Collaborative interactions, that is, groups of people working together through and around computer systems (in contrast to the early 1980s user-at-PC situation) have become the default unit of analysis. It is remarkable that such fundamental realignments were so easily assimilated by the HCI community.
thinkahol *

Studying child-mother interactions to design robots with social skills | KurzweilAI - 0 views

  •  
    University of Miami (UM) developmental psychologists and computer scientists from the University of California in San Diego (UC San Diego) are studying infant-mother interactions and working to implement their findings in a baby robot capable of learning social skills. The objectives are to help unravel the mysteries of human cognitive development and reach new the frontiers in robotics.
Todd Suomela

PLoS Biology - Timing the Brain: Mental Chronometry as a Tool in Neuroscience - 0 views

  •  
    How do we relate human thought processes to measurable events in the brain? Mental chronometry, which has origins that date back more than a century, seeks to measure the time course of mental operations in the human nervous system [1]. From the late 1800s until 1950, the field was built almost entirely around a single method: measuring and comparing people's reaction times during simple cognitive tasks.
thinkahol *

Natural brain state is primed to learn - life - 19 August 2011 - New Scientist - 0 views

  •  
    Apply the electrodes... Externally modulating the brain's activity can boost its performance. The easiest way to manipulate the brain is through transcranial direct current stimulation (tDCS), which involves applying electrodes directly to the head to influence neuron activity with an electric current. Roi Cohen Kadosh's team at the University of Oxford showed last year that targeting tDCS at the brain's right parietal lobe can boost a person's arithmetic ability - the effects were still apparent six months after the tDCS session (newscientist.com/article/dn19679). More recently, Richard Chi and Allan Snyder at the University of Sydney, Australia, demonstrated that tDCS can improve a person's insight. The pair applied tDCS to volunteers' anterior frontal lobes - regions known to play a role in how we perceive the world - and found the participants were three times as likely as normal to complete a problem-solving task (newscientist.com/article/dn20080). Brain stimulation can also boost a person's learning abilities, according to Agnes Flöel's team at the University of Münster in Germany. Twenty minutes of tDCS to a part of the brain called the left perisylvian area was enough to speed up and improve language learning in a group of 19 volunteers (Journal of Cognitive Neuroscience, DOI: 10.1162/jocn.2008.20098). Using the same technique to stimulate the brain's motor cortex, meanwhile, can enhance a person's ability to learn a movement-based skill (Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.0805413106).
1 - 5 of 5
Showing 20 items per page