Skip to main content

Home/ Peppers_Biology/ Group items tagged cell structure

Rss Feed Group items tagged

Lottie Peppers

A phylogenomic data-driven exploration of viral origins and evolution | Science Advances - 1 views

  •  
    The origin of viruses remains mysterious because of their diverse and patchy molecular and functional makeup. Although numerous hypotheses have attempted to explain viral origins, none is backed by substantive data. We take full advantage of the wealth of available protein structural and functional data to explore the evolution of the proteomic makeup of thousands of cells and viruses. Despite the extremely reduced nature of viral proteomes, we established an ancient origin of the "viral supergroup" and the existence of widespread episodes of horizontal transfer of genetic information. Viruses harboring different replicon types and infecting distantly related hosts shared many metabolic and informational protein structural domains of ancient origin that were also widespread in cellular proteomes. Phylogenomic analysis uncovered a universal tree of life and revealed that modern viruses reduced from multiple ancient cells that harbored segmented RNA genomes and coexisted with the ancestors of modern cells. The model for the origin and evolution of viruses and cells is backed by strong genomic and structural evidence and can be reconciled with existing models of viral evolution if one considers viruses to have originated from ancient cells and not from modern counterparts.
Lottie Peppers

Mitosis - 0 views

  •  
    How are the stages of mitosis related to the creation of identical daughter cells? The primary function of the stages of mitosis is to make certain that each daughter cell is genetically identical to the mother cell. The mother cell's DNA is copied during interphase. During mitosis the chromosomes condense from long strands to highly coiled structures. The two copies of each DNA strand, called sister chromatids, are physically attached to one another. The chromosomes are moved to the center of the cell and split apart in a highly coordinated fashion. The condensation of the chromosomes, the physical connection of the sister chromatids, and the precise movement of the chromosomes are all important in making sure that each daughter cell has one copy of each chromosome and is genetically identical to the mother cell.
Lottie Peppers

Specialized Cells: Significance and Examples - YouTube - 0 views

  •  
    Explore some examples of specialized plant and animal cells with the Amoeba Sisters! This video explains how specialized cell structure suits their function.
Lottie Peppers

Why do our cell's power plants have their own DNA? | Science | AAAS - 0 views

  •  
    It's one of the big mysteries of cell biology. Why do mitochondria-the oval-shaped structures that power our cells-have their own DNA, and why have they kept it when the cell itself has plenty of its own genetic material? A new study may have found an answer. Scientists think that mitochondria were once independent single-celled organisms until, more than a billion years ago, they were swallowed by larger cells. Instead of being digested, they settled down and developed a mutually beneficial relationship developed with their hosts that eventually enabled the rise of more complex life, like today's plants and animals.
Lottie Peppers

Inside the Cell - National Institute of General Medical Sciences - 0 views

  •  
    Inside the cell: -cell function, -interactive, functions, specialization, mitosis, aging/death, glossary
Lottie Peppers

Introduction to Cells: The Grand Cell Tour - YouTube - 0 views

  •  
    Buckle up for a prokaryote and eukaryote comparison before taking a ride into a cell to explore organelle structures and functions! This cell introduction also includes the modern cell theory.
Lottie Peppers

More Than Just a Cough: Exploring the Role of the Cytoskeleton in Fertility - National ... - 0 views

  •  
    This interrupted case study explores the role of cytoskeletal structures on human health, specifically on respiratory function, sperm motility, and female fertility. It follows the story of a couple struggling to conceive a child and the doctors working to help them. Students are presented with clinical histories, narrative elements, documentary-style videos, and microscopic evidence in order to determine the cause of the couple's infertility. Along the way, they learn about the three types of cytoskeletal elements and the roles these play in cellular biology and human physiology. The use of videos makes it suitable for the "flipped classroom," allowing students to prepare outside the classroom for the case study, which they then complete in class. An original video by the author on the structure and function of microtubules, microfilaments, and intermediate filaments is included. The case was developed for an introductory level general biology course and could be delivered during a unit on the cell structure and function. The case could also be used in a cell biology course.
Lottie Peppers

What Happened to Beau? - National Center for Case Study Teaching in Science - 0 views

  •  
    This flipped case was designed to introduce students in a general introductory biology course to basic protein structure. The two videos and interrupted case use keratins in hair as model proteins. From the videos students learn how amino acids regulate protein structure, and how small changes in amino acid sequence have large impacts on overall protein organization and function. The case story focuses on a puppy whose hair changes from straight to curly when it sheds its coat. The protagonist tests the adult versus puppy hair, and discovers that the amino acid composition is different in the curly versus straight hair samples. Students apply basic principles of protein structure to hypothesize why the dog's coat switched from straight to curly. The case intentionally stops short of providing a complete answer to the mystery, so students think through the molecular processes logically rather than having a final "correct" answer. An optional activity is provided that makes the case more appropriate for an introductory cell biology class.
Lottie Peppers

Everything you ever wanted to know about cells | TED-Ed - 0 views

  •  
    23min video Cells are everywhere. They are the basic structural, functional and biological units of all known living organisms. Cells are the smallest unit of life that is classified as a living thing, and are often called the "building blocks of life". But, there's more...
Lottie Peppers

Biostage Cellframe Technology for Organ Regeneration - YouTube - 0 views

  •  
    In order to improve the surgical outcome of these procedures and enhance patient quality of life, new and better tools are needed for esophageal reconstruction. Biostage is working on a new regenerative technology to address esophageal cancer through their pioneer Cellframe Technology. Two weeks before the surgery, stem cells are harvested from patient abdominal adipose tissue and allowed to incubate with a biocompatible esophageal implant. These cells interact and adhere to the implant and are able to respond to signals for regeneration once inside the patient, potentially restoring both the structural and functional integrity of the esophagus. These new approaches to organ implants could revolutionize resectional surgery by providing patients with functional replacements derived from their own cells.
Lottie Peppers

Maggie's Illness - National Center for Case Study Teaching in Science (NCCSTS) - 0 views

  •  
    This directed case study examines the molecular basis of cystic fibrosis to emphasize the relationship between the genetic code stored in a DNA sequence and the encoded protein's structure and function. Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein that functions to help maintain salt and water balance along the surface of the lung and gastrointestinal tract. This case introduces students to "Maggie," who has just been diagnosed with cystic fibrosis. The students must identify the mutation causing Maggie's disease by transcribing and translating a portion of the wildtype and mutated CFTR gene. Students then compare the three-dimensional structures of the resulting proteins to better understand the effect a single amino acid mutation can have on the overall shape of a protein. Students also review the concepts of tonicity and osmosis to examine how the defective CFTR protein leads to an increase in the viscosity of mucus in cystic fibrosis patients. This case was developed for use in an introductory college-level biology course but could also be adapted for use in an upper-level cell or molecular biology course.
Lottie Peppers

Inner Life Of A Cell - Full Version.mkv - YouTube - 0 views

  •  
    8:00 video cell structure labelled animation and narrated
Lottie Peppers

Inner Life Of A Cell - Full Version.mkv - YouTube - 0 views

  •  
    8:00 video cell structure labelled animation to music
Lottie Peppers

Magic Bullets - National Center for Case Study Teaching in Science - 1 views

  •  
    This clicker case was designed to teach students about basic enzyme structure, mechanisms of enzyme inhibition, and mechanisms of drug resistance. The story follows Oliver Casey, a patient afflicted with Chronic Myelogenous Leukemia (CML). CML is caused by a chromosomal mutation that affects the tyrosine kinase ABL, an enzyme important in regulating cell growth and proliferation. The chromosomal mutation gives rise to the BCR-ABL fusion gene that produces a constitutively active ABL kinase, which causes the leukemia. In May 2001, the Food and Drug Administration approved the use of a rationally designed tyrosine kinase inhibitor, imatinib (Gleevec®), for the treatment of CML. During that same month, Gleevec made the cover of TIME magazine, described as "new ammunition in the war on cancer." The case is structured for a flipped classroom environment in which students view preparatory videos (including one by the author) on their own before beginning the case. Written for a first-year introductory biology course, the case could also be adapted for AP/Honors high school biology or a cancer biology course.
Lottie Peppers

SDCOE Science Resource Center > CA NGSS Course Models > High School (9-12) > Four-Cours... - 0 views

  •  
    The life science/biology course is divided into 12 instructional segments grouped into four sections. In the first section, From Molecules to Organisms: Structures and Processes, students develop models of how molecules combine to build cells and organisms (IS1 [Structure and Function]; IS2 [Growth and Development of Organisms]; IS3 [Organization for Matter and Energy Flow in Organisms]). In the second section, Ecosystems: Interactions, Energy, and Dynamics, students zoom out to the macroscopic scale to show how organisms interact (IS4 [Interdependent Relationships in Ecosystems]; IS5 [Cycles of Matter and Energy Transfer in Ecosystems]; IS6 [Ecosystem Dynamics, Functioning, and Resilience]; IS7 [Social Interactions and Group Behavior]). Students return to the role that DNA plays in inheritance during the third section, Heredity: Inheritance and Variation of Traits (IS8 [Inheritance of Traits]; IS9 [Variation of Traits]). The class ends tying together interactions at all these scales by explaining evolution and natural selection in Biological Evolution: Unity and Diversity (IS10 [Evidence of Common Ancestry and Diversity]; IS11 [Natural Selection]; IS12 [Adaptation and Biodiversity]). A vignette in IS12 illustrates the level of three-dimensional understanding students are expected to exhibit as a capstone of the course.
Lottie Peppers

Little Girl Lost: A Case Study on Defective Cellular Organelles - National Center for C... - 0 views

  •  
    This case study introduces students to the structure and function of cellular organelles and seeks to show their importance by discussing diseases and disorders that can result when an organelle does not function as it should. The storyline follows a family whose joy at bringing home a new baby is soon altered by their child's sudden illness, which is eventually diagnosed as Leigh Disease. This disease occurs when defective mitochondria fail to produce energy needed by the cell, particularly affecting cells with high-energy needs like those in the brain, muscle, and gastrointestinal tract. The narrative also discusses some of the ways in which Leigh disease is inherited, treatment options, and the typical prognosis. The case was designed for an introductory non-majors biology course, but could also be used in other science or health related courses. Instructors also have the option of running the case in a "flipped classroom" in which students watch three recommended videos outside of class as a way of preparing for working on the case in class.
Lottie Peppers

SEPUP Cell Simulation - 1 views

  •  
    drag and drop review and comparison of plant and animal cells
Lottie Peppers

Cell Vocabulary Review Game | Serendip Studio - 0 views

  •  
    This game helps students to enjoy reviewing vocabulary related to cells, organelles, and the plasma membrane.  Each card in the deck has a target vocabulary word and two related taboo words that the student may not use as he/she gives clues so the other students in his/her small group can guess the target word.  Many students have trouble learning the substantial new vocabulary required for biology, and this game lets students have fun while reinforcing their understanding of key terms.  The first file below provides the master copy for creating the card decks for this game, and the second file below provides the teacher notes, including instructions for playing the game.
Lottie Peppers

Study: DNA Folding Patterns Revealed | The Scientist Magazine® - 0 views

  •  
    When it's completely unraveled, DNA is known to extend approximately six feet in length, yet is somehow able to cram itself into a cell's nucleus. In a study published today (July 27) in Science, researchers created a novel visualization method that revealed a 3-D glimpse of chromatin as it sits jam-packed within the nuclei of human cells. The researchers found that, contrary to how it's depicted in most textbooks, chromatin does not fold in on itself in an organized manner to create distinct structures. Instead, it forms a pliable, inconsistent chain characterized by a wide variety of folding patterns. 
Lottie Peppers

Watch Information Flow between Neighboring Cells [Video and Animation] - Scientific Ame... - 0 views

  •  
    In their May 2015 Scientific American article "Cellular Small Talk," Dale W. Laird, Paul D. Lampe and Ross G. Johnson report on recent discoveries showing that the disruption of cellular structures called gap junctions can cause various diseases.
1 - 20 of 34 Next ›
Showing 20 items per page