Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged pollution

Rss Feed Group items tagged

D'coda Dcoda

The Dispatch Queue - An Alternative Means of Accounting for External Costs? [28Sep11] - 0 views

  • Without much going on recently that hasn’t been covered by other blog posts, I’d like to explore a topic not specifically tied to nuclear power or to activities currently going on in Washington, D.C. It involves an idea I have about a possible alternative means of having the electricity market account for the public health and environmental costs of various energy sources, and encouraging the development and use of cleaner sources (including nuclear) without requiring legislation. Given the failure of Congress to take action on global warming, as well as environmental issues in general, non-legislative approaches to accomplishing environmental goals may be necessary. The Problem
  • One may say that the best response would be to significantly tighten pollution regulations, perhaps to the point where no sources have significant external costs. There are problems with this approach, however, above and beyond the fact that the energy industry has (and will?) successfully blocked the legislation that would be required. Significant tightening of regulations raises issues such as how expensive compliance will be, and whether or not viable alternative (cleaner) sources would be available. The beauty of simply placing a cost (or tax) on pollution that reflects its costs to public health and the environment is that those issues need not be addressed. The market just decides between sources based on the true, overall cost of each, resulting in the minimum overall (economic + environmental) cost-generation portfolio
  • The above reasoning is what led to policies like cap-and-trade or a CO2 emissions tax being proposed as a solution for the global warming problem. This has not flown politically, however. Policies that attempt to have external costs included in the market cost of energy have been labeled a “tax increase.” This is particularly true given that the associated pollution taxes (or emissions credit costs) would have largely gone to the government.
  • ...15 more annotations...
  • One final idea, which does not involve money going to or from government, is simply requiring that cleaner sources provide a certain fraction of our overall power generation. The many state Renewable Portfolio Standards (that do not include nuclear) and the Clean Energy Standard being considered by Congress and the Obama administration (which does include nuclear) are examples of this policy. While better than nothing, such policies are not ideal in that they are crude, and don’t involve a quantitative incentive based on real external costs. An energy source is either defined as “clean,” or it is not. Note that the definition of “clean” would be decided politically, as opposed to objectively based on tangible external costs determined by scientific studies (nuclear’s exclusion from state Renewable Portfolio Standards policies being one outrageous example). Finally, there is the fact that any such policy would require legislation.
  • Well, if we can’t tax pollution, how about encouraging the use of clean sources by giving them subsidies? This has proved to be more popular so far, but this idea has also recently run into trouble, given the current situation with the budget deficit and national debt. Events like the Solyndra bankruptcy have put government clean energy subsidies even more on the defensive. Thus, it seems that neither policies involving money flowing to the government nor policies involving money flowing from the government are politically viable at this point.
  • All of the above begs the question whether there is a policy available that will encourage the use of cleaner energy sources that is revenue-neutral (i.e., does not involve money flowing to or from the government), does not involve the outright (political) selection of certain energy sources over others, and does not require legislation. Enter the Dispatch Queue
  • There must be enough power plants in a given region to meet the maximum load (or demand) expected to occur. In fact, total generation capacity must exceed maximum demand by a specified “reserve margin,” to address the possibility of a plant going offline, or other possible considerations. Due to the fact that demand varies significantly with time, a significant fraction of the generation capacity remains offline, some or most of the time. The dispatch queue is a means by which utilities, or independent regional grid operators, decide which power plants will operate in order to meet demand at any given instant. A good discussion of dispatch queues and how they operate can be found in this Department of Energy report.
  • The general goal of the methodology used to set the dispatch queue order is to minimize overall generation cost, while staying in compliance with all federal or state laws (environmental rules, etc.). This is done by placing the power plants with the lowest “variable” cost first in the queue. Plants with the highest “variable” cost are placed last. The “variable” cost of a plant represents how much more it costs to operate the plant than it costs to leave it idle (i.e., it includes the fuel cost and maintenance costs that arise from operation, but does not include the plant capital cost, personnel costs, or any fixed maintenance costs). Thus, one starts with the least expensive plants, and moves up (in cost) until generation meets demand. The remaining, more expensive plants are not fired up. This ensures that the lowest-operating-cost set of plants is used to meet demand at any given time
  • As far as who makes the decisions is concerned, in many cases the local utility itself runs the dispatch for its own service territory. In most of the United States, however, there is a large regional grid (covering several utilities) that is operated by an Independent System Operator (ISO) or Regional Transmission Organization (RTO), and those organizations, which are independent of the utilities, set the dispatch queue for the region. The Idea
  • As discussed above, a plant’s place in the dispatch queue is based upon variable cost, with the lowest variable cost plants being first in the queue. As discussed in the DOE report, all the dispatch queues in the country base the dispatch order almost entirely on variable cost, with the only possible exceptions being issues related to maximizing grid reliability. What if the plant dispatch methodology were revised so that environmental costs were also considered? Ideally, the public health and environmental costs would be objectively and scientifically determined and cast in terms of an equivalent economic cost (as has been done in many scientific studies such as the ExternE study referenced earlier). The calculated external cost would be added to a plant’s variable cost, and its place in the dispatch queue would be adjusted accordingly. The net effect would be that dirtier plants would be run much less often, resulting in greatly reduced pollution.
  • This could have a huge impact in the United States, especially at the current time. Currently, natural gas prices are so low that the variable costs of combine-cycle natural gas plants are not much higher than those of coal plants, even without considering environmental impacts. Also, there is a large amount of natural gas generation capacity sitting idle.
  • More specifically, if dispatch queue ordering methods were revised to even place a small (economic) weight on environmental costs, there would be a large switch from coal to gas generation, with coal plants (especially the older, dirtier ones) moving to the back of the dispatch queue, and only running very rarely (at times of very high demand). The specific idea of putting gas plants ahead of coal plants in the dispatch queue is being discussed by others.
  • The beauty of this idea is that it does not involve any type of tax or government subsidy. It is revenue neutral. Also, depending on the specifics of how it’s implemented, it can be quantitative in nature, with environmental costs of various power plants being objectively weighed, as opposed certain sources simply being chosen, by government/political fiat, over others. It also may not require legislation (see below). Finally, dispatch queues and their policies and methods are a rather arcane subject and are generally below the political radar (many folks haven’t even heard of them). Thus, this approach may allow the nation’s environmental goals to be (quietly) met without causing a political uproar. It could allow policy makers to do the right thing without paying too high of a political cost.
  • Questions/Issues The DOE report does mention some examples of dispatch queue methods factoring in issues other than just the variable cost. It is fairly common for issues of grid reliability to be considered. Also, compliance with federal or state environmental requirements can have some impacts. Examples of such laws include limits on the hours of operation for certain polluting facilities, or state requirements that a “renewable” facility generate a certain amount of power over the year. The report also discusses the possibility of favoring more fuel efficient gas plants over less efficient ones in the queue, even if using the less efficient plants at that moment would have cost less, in order to save natural gas. Thus, the report does discuss deviations from the pure cost model, to consider things like environmental impact and resource conservation.
  • I could not ascertain from the DOE report, however, what legal authorities govern the entities that make the plant dispatch decisions (i.e., the ISOs and RTOs), and what types of action would be required in order to change the dispatch methodology (e.g., whether legislation would be required). The DOE report was a study that was called for by the Energy Policy Act of 2005, which implies that its conclusions would be considered in future congressional legislation. I could not tell from reading the report if the lowest cost (only) method of dispatch is actually enshrined somewhere in state or federal law. If so, the changes I’m proposing would require legislation, of course.
  • The DOE report states that in some regions the local utility runs the dispatch queue itself. In the case of the larger grids run by the ISOs and RTOs (which cover most of the country), the report implies that those entities are heavily influenced, if not governed, by the Federal Energy Regulatory Commission (FERC), which is part of the executive branch of the federal government. In the case of utility-run dispatch queues, it seems that nothing short of new regulations (on pollution limits, or direct guidance on dispatch queue ordering) would result in a change in dispatch policy. Whereas reducing cost and maximizing grid reliability would be directly in the utility’s interest, favoring cleaner generation sources in the queue would not, unless it is driven by regulations. Thus, in this case, legislation would probably be necessary, although it’s conceivable that the EPA could act (like it’s about to on CO2).
  • In the case of the large grids run by ISOs and RTOs, it’s possible that such a change in dispatch methodology could be made by the federal executive branch, if indeed the FERC has the power to mandate such a change
  • Effect on Nuclear With respect to the impacts of including environmental costs in plant dispatch order determination, I’ve mainly discussed the effects on gas vs. coal. Indeed, a switch from coal to gas would be the main impact of such a policy change. As for nuclear, as well as renewables, the direct/immediate impact would be minimal. That is because both nuclear and renewable sources have high capital costs but very low variable costs. They also have very low environmental impacts; much lower than those of coal or gas. Thus, they will remain at the front of the dispatch queue, ahead of both coal and gas.
D'coda Dcoda

The Environmental Case for Nuclear Energy - Korea [26Sep11] - 0 views

  • Six months after the Fukushima disaster, the repercussions of history’s second-largest nuclear meltdown are still being felt, not only in Japan but around the world. Predictably, people are rethinking the wisdom of relying on nuclear power. The German and Swiss governments have pledged to phase out the use of nuclear power, and Italy has shelved plans to build new reactors. Public debate on future nuclear energy use continues in the United Kingdom, Japan, Finland, and other countries.So far, it is unclear what the reaction of the Korean government will be. Certainly, the public backlash to nuclear energy that has occurred elsewhere in the world is also evident in Korea; according to one study, opposition to nuclear energy in Korea has tripled since the Fukushima disaster. However, there are countervailing considerations here as well, which have caused policy-makers to move cautiously. Korea’s economy is often seen as particularly reliant on the use of nuclear power due to its lack of fossil fuel resources, while Korean companies are some of the world’s most important builders (and exporters) of nuclear power stations.
  • There are three primary reasons why nuclear power is safer and greener than power generated using conventional fossil fuels. First ― and most importantly ― nuclear power does not directly result in the emission of greenhouse gases. Even when you take a life-cycle approach and factor in the greenhouse gas emissions from the construction of the plant, there is no contest. Fossil fuels ― whether coal, oil, or natural gas ― create far more global warming.
  • The negative effects of climate change will vastly outweigh the human and environmental consequences of even a thousand Fukushimas. This is not the place to survey all the dire warnings that have been coming out of the scientific community; suffice it to quote U.N. Secretary General Ban Ki-moon’s concise statement that climate change is the world’s “only one truly existential threat … the great moral imperative of our era.” A warming earth will not only lead to death and displacement in far-off locales, either. Typhoons are already hitting the peninsula with greater intensity due to the warming air, and a recent study warns that global warming will cause Korea to see greatly increased rates of contagious diseases such as cholera and bacillary dysentery.
  • ...5 more annotations...
  • As the world’s ninth largest emitter of greenhouse gases, it should be (and is) a major priority for Korea to reduce emissions, and realistically that can only be accomplished by increasing the use of nuclear power. As Barack Obama noted with regard to the United States’ energy consumption, “Nuclear energy remains our largest source of fuel that produces no carbon emissions. It’s that simple. (One plant) will cut carbon pollution by 16 million tons each year when compared to a similar coal plant. That’s like taking 3.5 million cars off the road.” Environmentalists have traditionally disdained nuclear power, but even green activists cannot argue with that logic, and increasing numbers of them ― Patrick Moore, James Lovelock, Stewart Brand and the late Bishop Hugh Montefiore being prominent examples ― have become supporters of the smart use of nuclear power.
  • Second, the immediate dangers to human health of conventional air pollution outweigh the dangers of nuclear radiation. In 2009, the Seoul Metropolitan Government measured an average PM10 (particulate) concentration in the city of 53.8 g/m3, a figure that is roughly twice the level in other developed nations. According to the Gyeonggi Research Institute, PM10 pollution leads to 10,000 premature deaths per year in and around Seoul, while the Korea Economic Institute has estimated its social cost at 10 trillion won. While sulfur dioxide levels in the region have decreased significantly since the 1980s, the concentration of nitrogen dioxide in the air has not decreased, and ground-level ozone levels remain high. Unlike fossil fuels, nuclear power does not result in the release of any of these dangerous pollutants that fill the skies around Seoul, creating health hazards that are no less serious for often going unnoticed.
  • And third, the environmental and safety consequences of extracting and transporting fossil fuels are far greater than those involved with the production of nuclear power. Korea is one of the largest importers of Indonesian coal for use in power plants, for example. This coal is not always mined with a high level of environmental and safety protections, with a predictable result of air, water, and land pollution in one of Asia’s most biologically sensitive ecosystems. Coal mining is also one of the world’s more dangerous occupations, as evidenced by the many tragic disasters involving poorly managed Chinese mines. While natural gas is certainly a better option than coal, its distribution too can be problematic, whether by ship or through the recently proposed pipeline that would slice down through Siberia and North Korea to provide direct access to Russian gas.
  • What about truly green renewable energy, some might ask ― solar, wind, geothermal, hydroelectric, and tidal energy? Of course, Korea would be a safer and more sustainable place if these clean renewable resources were able to cover the country’s energy needs. However, the country is not particularly well suited for hydroelectric projects, while the other forms of renewable energy production are expensive, and are unfortunately likely to remain so for the foreseeable future. The fact is that most Koreans will not want to pay the significantly higher energy prices that would result from the widespread use of clean renewables, and in a democratic society, the government is unlikely to force them to do so. Thus, we are left with two realistic options: fossil fuels or nuclear. From an environmental perspective, it would truly be a disaster to abandon the latter.
  • By Andrew Wolman Andrew Wolman is an assistant professor at the Hankuk University of Foreign Studies Graduate School of International and Area Studies, where he teaches international law and human rights.
D'coda Dcoda

Ten Most Radioactive Places on Earth [26Sep11] - 0 views

  • While the 2011 earthquake and worries surrounding Fukushima have brought the threat of radioactivity back into the public consciousness, many people still don't realize that radioactive contamination is a worldwide danger. Radionuclides are in the top six toxic threats as listed in the 2010 report by The Blacksmith Institute, an NGO dedicated to tackling pollution. You might be surprised by the locations of some of the world’s most radioactive places — and thus the number of people living in fear of the effects radiation could have on them and their children.
  • 10. Hanford, USA
  • The Hanford Site, in Washington, was an integral part of the US atomic bomb project, manufacturing plutonium for the first nuclear bomb and "Fat Man," used at Nagasaki. As the Cold War waged on, it ramped up production, supplying plutonium for most of America's 60,000 nuclear weapons. Although decommissioned, it still holds two thirds of the volume of the country’s high-level radioactive waste — about 53 million gallons of liquid waste, 25 million cubic feet of solid waste and 200 square miles of contaminated groundwater underneath the area, making it the most contaminated site in the US. The environmental devastation of this area makes it clear that the threat of radioactivity is not simply something that will arrive in a missile attack, but could be lurking in the heart of your own country.
  • ...18 more annotations...
  • 9. The Mediterranean
  • For years, there have been allegations that the ‘Ndrangheta syndicate of the Italian mafia has been using the seas as a convenient location in which to dump hazardous waste — including radioactive waste — charging for the service and pocketing the profits. An Italian NGO, Legambiente, suspects that about 40 ships loaded with toxic and radioactive waste have disappeared in Mediterranean waters since 1994. If true, these allegations paint a worrying picture of an unknown amount of nuclear waste in the Mediterranean whose true danger will only become clear when the hundreds of barrels degrade or somehow otherwise break open. The beauty of the Mediterranean Sea may well be concealing an environmental catastrophe in the making.
  • 8. The Somalian Coast
  • The Italian mafia organization just mentioned has not just stayed in its own region when it comes to this sinister business. There are also allegations that Somalian waters and soil, unprotected by government, have been used for the sinking or burial of nuclear waste and toxic metals — including 600 barrels of toxic and nuclear waste, as well as radioactive hospital waste. Indeed, the United Nations’ Environment Program believes that the rusting barrels of waste washed up on the Somalian coastline during the 2004 Tsunami were dumped as far back as the 1990s. The country is already an anarchic wasteland, and the effects of this waste on the impoverished population could be as bad if not worse than what they have already experienced.
  • 7. Mayak, Russia
  • 3. Mailuu-Suu, Kyrgyzstan
  • 6. Sellafield, UK
  • Located on the west coast of England, Sellafield was originally a plutonium production facility for nuclear bombs, but then moved into commercial territory. Since the start of its operation, hundreds of accidents have occurred at the plant, and around two thirds of the buildings themselves are now classified as nuclear waste. The plant releases some 8 million liters of contaminated waste into the sea on a daily basis, making the Irish Sea the most radioactive sea in the world. England is known for its green fields and rolling landscapes, but nestled in the heart of this industrialized nation is a toxic, accident-prone facility, spewing dangerous waste into the oceans of the world.
  • 5. Siberian Chemical Combine, Russia
  • Mayak is not the only contaminated site in Russia; Siberia is home to a chemical facility that contains over four decades' worth of nuclear waste. Liquid waste is stored in uncovered pools and poorly maintained containers hold over 125,000 tons of solid waste, while underground storage has the potential to leak to groundwater. Wind and rain have spread the contamination to wildlife and the surrounding area. And various minor accidents have led to plutonium going missing and explosions spreading radiation. While the snowy landscape may look pristine and immaculate, the facts make clear the true level of pollution to be found here
  • 4. The Polygon, Kazakhstan
  • Once the location for the Soviet Union’s nuclear weapons testing, this area is now part of modern-day Kazakhstan. The site was earmarked for the Soviet atomic bomb project due to its “uninhabited” status — despite the fact that 700,000 people lived in the area. The facility was where the USSR detonated its first nuclear bomb and is the record-holder for the place with the largest concentration of nuclear explosions in the world: 456 tests over 40 years from 1949 to 1989. While the testing carried out at the facility — and its impact in terms of radiation exposure — were kept under wraps by the Soviets until the facility closed in 1991, scientists estimate that 200,000 people have had their health directly affected by the radiation. The desire to destroy foreign nations has led to the specter of nuclear contamination hanging over the heads of those who were once citizens of the USSR.
  • The industrial complex of Mayak, in Russia's north-east, has had a nuclear plant for decades, and in 1957 was the site of one of the world’s worst nuclear accidents. Up to 100 tons of radioactive waste were released by an explosion, contaminating a massive area. The explosion was kept under wraps until the 1980s. Starting in the 1950s, waste from the plant was dumped in the surrounding area and into Lake Karachay. This has led to contamination of the water supply that thousands rely on daily. Experts believe that Karachay may be the most radioactive place in the world, and over 400,000 people have been exposed to radiation from the plant as a result of the various serious incidents that have occurred — including fires and deadly dust storms. The natural beauty of Lake Karachay belies its deadly pollutants, with the radiation levels where radioactive waste flows into its waters enough to give a man a fatal dose within an hour.
  • Considered one of the top ten most polluted sites on Earth by the 2006 Blacksmith Institute report, the radiation at Mailuu-Suu comes not from nuclear bombs or power plants, but from mining for the materials needed in the processes they entail. The area was home to a uranium mining and processing facility and is now left with 36 dumps of uranium waste — over 1.96 million cubic meters. The region is also prone to seismic activity, and any disruption of the containment could expose the material or cause some of the waste to fall into rivers, contaminating water used by hundreds of thousands of people. These people may not ever suffer the perils of nuclear attack, but nonetheless they have good reason to live in fear of radioactive fallout every time the earth shakes.
  • 2. Chernobyl, Ukraine
  • Home to one of the world’s worst and most infamous nuclear accidents, Chernobyl is still heavily contaminated, despite the fact that a small number of people are now allowed into the area for a limited amount of time. The notorious accident caused over 6 million people to be exposed to radiation, and estimates as to the number of deaths that will eventually occur due to the Chernobyl accident range from 4,000 to as high as 93,000. The accident released 100 times more radiation than the Nagasaki and Hiroshima bombs. Belarus absorbed 70 percent of the radiation, and its citizens have been dealing with increased cancer incidence ever since. Even today, the word Chernobyl conjures up horrifying images of human suffering.
  • 1. Fukushima, Japan
  • The 2011 earthquake and tsunami was a tragedy that destroyed homes and lives, but the effects of the Fukushima nuclear power plant may be the most long-lasting danger. The worst nuclear accident since Chernobyl, the incident caused meltdown of three of the six reactors, leaking radiation into the surrounding area and the sea, such that radiative material has been detected as far as 200 miles from the plant. As the incident and its ramifications are still unfolding, the true scale of the environmental impact is still unknown. The world may still be feeling the effects of this disaster for generations to come.
D'coda Dcoda

EPA Finds Compound Used in Fracking in Wyoming Aquifer [10Nov11]f - 0 views

  • As the country awaits results from a nationwide safety study on the natural gas drilling process of fracking, a separate government investigation into contamination in a place where residents have long complained [1] that drilling fouled their water has turned up alarming levels of underground pollution. A pair of environmental monitoring wells drilled deep into an aquifer in Pavillion, Wyo., contain high levels of cancer-causing compounds and at least one chemical commonly used in hydraulic fracturing, according to new water test results [2] released yesterday by the Environmental Protection Agency.
  • The findings are consistent with water samples the EPA has collected from at least 42 homes in the area since 2008, when ProPublica began reporting [3] on foul water and health concerns in Pavillion and the agency started investigating reports of contamination there. Last year -- after warning residents not to drink [4] or cook with the water and to ventilate their homes when they showered -- the EPA drilled the monitoring wells to get a more precise picture of the extent of the contamination.
  • The Pavillion area has been drilled extensively for natural gas over the last two decades and is home to hundreds of gas wells. Residents have alleged for nearly a decade [1] that the drilling -- and hydraulic fracturing in particular -- has caused their water to turn black and smell like gasoline. Some residents say they suffer neurological impairment [5], loss of smell, and nerve pain they associate with exposure to pollutants. The gas industry -- led by the Canadian company EnCana, which owns the wells in Pavillion -- has denied that its activities are responsible for the contamination. EnCana has, however, supplied drinking water to residents.
  • ...1 more annotation...
  • The information released yesterday by the EPA was limited to raw sampling data: The agency did not interpret the findings or make any attempt to identify the source of the pollution. From the start of its investigation, the EPA has been careful to consider all possible causes of the contamination and to distance its inquiry from the controversy around hydraulic fracturing. Still, the chemical compounds the EPA detected are consistent with those produced from drilling processes, including one -- a solvent called 2-Butoxyethanol (2-BE) -- widely used in the process of hydraulic fracturing. The agency said it had not found contaminants such as nitrates and fertilizers that would have signaled that agricultural activities were to blame.
D'coda Dcoda

Fukushima radiation headed across Pacific [05Apr12] - 0 views

  • Radioactive material from the Fukushima nuclear disaster has been found in tiny sea creatures and ocean water some 186 miles (300 kilometers) off the coast of Japan, revealing the extent of the release and the direction pollutants might take in a future environmental disaster. In some places, the researchers from Woods Hole Oceanographic Institution (WHOI) discovered cesium radiation hundreds to thousands of times higher than would be expected naturally, with ocean eddies and larger currents both guiding the " radioactive debris " and concentrating it.
  • With these results, detailed Monday in the journal Proceedings of the National Academy of Sciences, the team estimates it will take at least a year or two for the radioactive material released at Fukushima to get across the Pacific Ocean. And that information is useful when looking at all the other pollutants and debris released as a result of the tsunami that destroyed towns up and down the eastern coast of Japan.
D'coda Dcoda

U.S. Government Confirms Link Between Earthquakes and Hydraulic Fracturing at Oil Price - 0 views

  • On 5 November an earthquake measuring 5.6 rattled Oklahoma and was felt as far away as Illinois. Until two years ago Oklahoma typically had about 50 earthquakes a year, but in 2010, 1,047 quakes shook the state. Why? In Lincoln County, where most of this past weekend's seismic incidents were centered, there are 181 injection wells, according to Matt Skinner, an official from the Oklahoma Corporation Commission, the agency which oversees oil and gas production in the state. Cause and effect? The practice of injecting water into deep rock formations causes earthquakes, both the U.S. Army and the U.S. Geological Survey have concluded.
  • The U.S. natural gas industry pumps a mixture of water and assorted chemicals deep underground to shatter sediment layers containing natural gas, a process called hydraulic fracturing, known more informally as “fracking.” While environmental groups have primarily focused on fracking’s capacity to pollute underground water, a more ominous byproduct emerges from U.S. government studies – that forcing fluids under high pressure deep underground produces increased regional seismic activity. As the U.S. natural gas industry mounts an unprecedented and expensive advertising campaign to convince the public that such practices are environmentally benign, U.S. government agencies have determined otherwise. According to the U.S. Army’s Rocky Mountain Arsenal website, the RMA drilled a deep well for disposing of the site’s liquid waste after the U.S. Environmental Protection Agency “concluded that this procedure is effective and protective of the environment.”  According to the RMA, “The Rocky Mountain Arsenal deep injection well was constructed in 1961, and was drilled to a depth of 12,045 feet” and 165 million gallons of Basin F liquid waste, consisting of “very salty water that includes some metals, chlorides, wastewater and toxic organics” was injected into the well during 1962-1966.
  • Why was the process halted? “The Army discontinued use of the well in February 1966 because of the possibility that the fluid injection was “triggering earthquakes in the area,” according to the RMA. In 1990, the “Earthquake Hazard Associated with Deep Well Injection--A Report to the U.S. Environmental Protection Agency” study of RMA events by Craig Nicholson, and R.I. Wesson stated simply, “Injection had been discontinued at the site in the previous year once the link between the fluid injection and the earlier series of earthquakes was established.” Twenty-five years later, “possibility” and ‘established” changed in the Environmental Protection Agency’s July 2001 87 page study, “Technical Program Overview: Underground Injection Control Regulations EPA 816-r-02-025,” which reported, “In 1967, the U.S. Army Corps of Engineers and the U.S. Geological Survey (USGS) determined that a deep, hazardous waste disposal well at the Rocky Mountain Arsenal was causing significant seismic events in the vicinity of Denver, Colorado.” There is a significant divergence between “possibility,” “established” and “was causing,” and the most recent report was a decade ago. Much hydraulic fracturing to liberate shale oil gas in the Marcellus shale has occurred since.
  • ...3 more annotations...
  • According to the USGS website, under the undated heading, “Can we cause earthquakes? Is there any way to prevent earthquakes?” the agency notes, “Earthquakes induced by human activity have been documented in a few locations in the United States, Japan, and Canada. The cause was injection of fluids into deep wells for waste disposal and secondary recovery of oil, and the use of reservoirs for water supplies. Most of these earthquakes were minor. The largest and most widely known resulted from fluid injection at the Rocky Mountain Arsenal near Denver, Colorado. In 1967, an earthquake of magnitude 5.5 followed a series of smaller earthquakes. Injection had been discontinued at the site in the previous year once the link between the fluid injection and the earlier series of earthquakes was established.” Note the phrase, “Once the link between the fluid injection and the earlier series of earthquakes was established.” So both the U.S Army and the U.S. Geological Survey over fifty years of research confirm on a federal level that that “fluid injection” introduces subterranean instability and is a contributory factor in inducing increased seismic activity.” How about “causing significant seismic events?”
  • Fast forward to the present. Overseas, last month Britain’s Cuadrilla Resources announced that it has discovered huge underground deposits of natural gas in Lancashire, up to 200 trillion cubic feet of gas in all. On 2 November a report commissioned by Cuadrilla Resources acknowledged that hydraulic fracturing was responsible for two tremors which hit Lancashire and possibly as many as fifty separate earth tremors overall. The British Geological Survey also linked smaller quakes in the Blackpool area to fracking. BGS Dr. Brian Baptie said, “It seems quite likely that they are related,” noting, “We had a couple of instruments close to the site and they show that both events occurred near the site and at a shallow depth.” But, back to Oklahoma. Austin Holland’s August 2011 report, “Examination of Possibly Induced Seismicity from Hydraulic Fracturing in the Eola Field, Garvin County, Oklahoma” Oklahoma Geological Survey OF1-2011, studied 43 earthquakes that occurred on 18 January, ranging in intensity from 1.0 to 2.8 Md (milliDarcies.) While the report’s conclusions are understandably cautious, it does state, “Our analysis showed that shortly after hydraulic fracturing began small earthquakes started occurring, and more than 50 were identified, of which 43 were large enough to be located.”
  • Sensitized to the issue, the oil and natural gas industry has been quick to dismiss the charges and deluge the public with a plethora of televisions advertisements about how natural gas from shale deposits is not only America’s future, but provides jobs and energy companies are responsible custodians of the environment. It seems likely that Washington will eventually be forced to address the issue, as the U.S. Army and the USGS have noted a causal link between the forced injection of liquids underground and increased seismic activity. While the Oklahoma quake caused a deal of property damage, had lives been lost, the policy would most certainly have come under increased scrutiny from the legal community. While polluting a local community’s water supply is a local tragedy barely heard inside the Beltway, an earthquake ranging from Oklahoma to Illinois, Kansas, Arkansas, Tennessee and Texas is an issue that might yet shake voters out of their torpor, and national elections are slightly less than a year away.
D'coda Dcoda

BP's Deception in the Gulf : Part 1- The farcical 3 leaks on the broken riser story [10... - 0 views

  • Of all the lies that came out of the Gulf disaster, the most preposterous has been the 3 leaks on the riser story. Figure 165-0a to 165-0c were the first few schematic illustrations of BP’s blowout incident. They were so embarrassingly stupid and logic defying, most experts believed the schematics were deliberately drawn by cartoonists to confuse the average Joe Public. The patchwork of realities resembled a makeshift car hastily assembled from parts of different size vehicles. Obviously a mini car body does not match the oversize truck tires. It is obvious the 5½ inch drill pipe at leak(3) cannot be the same 21inch diameter riser (actually a well casing) at leak(2). Yet the world's technical experts willfully overlooked this fundamental discrepancy and allowed the criminals to get away with murders. And America, the world's greatest nation shouting human rights abuses all over the world, allowed this hideous crime of mass destruction in its own backyard to go unpunished? In China, the corporate criminals responsible for this environmental carnage would have been executed instead of having their lives back. Can the 11 dead crewmen, their young families and thousands of Gulf victims who suffered numerous medical problems from the toxic contaminated Gulf waters and corexit sprayed on them, ever have their lives back?
  • Surely the world's most technologically advanced country could not have been so easily fooled by this “3 wells & 3 leaks on a single riser” fairy tale (concocted Beyond Phantasm). Besides the many controversial circumstances surrounding the sinking of the burning rig (DWH) and the sudden breaking of the super-strong riser in calm water, how could a third open-ended leak (3) be even possible beyond the completely severed riser at the second leak (2)? See fig165-0c. Leak(2) has to be the blown crater of well no.#3 as illustrated in many of our previous articles and irrefutably shown in Figure 165-5 with the right coordinates in the few undoctored videos.
  • “When you have eliminated the impossible, whatever remains, however improbable, must be the truth.” S Homes.
  • ...4 more annotations...
  • ince June 2010, we have illustrated many physics of impossibilities concocted by BP. Two years later, it seems the world has not awaken from its ignorantly blissful slumber. This disaster is more than just a disastrous mega oil spill. If the world's foremost scientists and investigators cannot figure out the many fundamental flaws in the simple “3 leaks-3 wells” fairy tale, how can there be any hope of ever solving problems beyond kindergarten level? Forget the carbon tax, the ban on hazardous gas emission and just about any anti-pollution measures designed to improve the global environment. All these schemes have sinister undertones with profiting on mass miseries of others.
  • In the Gulf disaster, you have the biggest environmental polluter in human history. The punishment for a crime of mass destruction that could have been averted, was just a slap on the wrist? If this is not the clearest proof of corruption at the highest level and biggest HSE (health, safety & environment) farce, then what is?
  • It was not the failure of safety regulations but the enforcement of regulations. The government admitted this much by sacking MMS's director and changing it to BOEMRE. It was not the failure of technology but the devious use of technology to cloak unfair business practices or safety farce at the very least. But would shrewd corporate criminals risk billions of investment dollars just to skimp on some daily operation expenses and safety devices? Just like the fairy tale of the 3 leaks, this was just the red herring. The oil industry will start on its decline just as the coal industry did, after its replacement by alternative cheaper and cleaner energy sources (The Future of Free Energy).
  • Giant global oil corporations may not have the next 10 years to recover their mega billion dollar investments. With the writings on the wall and their failures to control (prevent) the advent of free energy, the oil oligarchs had to devise emergency exit schemes before oil independence becomes public knowledge. High crude oil prices cannot be manipulated too high or long enough to recoup their billions of investment dollars globally. They risk becoming economic dinosaurs.
  •  
    Lengthy article with lots of visuals, only partially annotated so read the entire article at the site
Dan R.D.

$280m fund for home-based solar the largest yet [14Jun11] - 0 views

  • Google and SolarCity have launched a $280 million fund to help bring solar power to residential customers. It’s Google’s largest investment to date in the clean-energy sector, as well as the largest residential solar fund ever created in the US. It’s also the 15th project fund for SolarCity, which has worked with seven different partners to finance $1.28 billion in solar projects. “Google is setting an example that other leading American companies can follow,” said Lyndon Rive, CEO of SolarCity. “The largest 200 corporations in the US have more than $1 trillion in cash on their balance sheets. Investments in solar energy generate returns for corporate investors, offer cost savings for homeowners, create new, local jobs for jobseekers, and protect the environment from polluting power sources. If more companies follow Google’s lead, we can dramatically reduce our nation’s dependence on polluting power.”
D'coda Dcoda

Senator Lamar Alexander: "Nuclear Power Is the Most Reliable and Useful Source of Green... - 0 views

  • U.S. Senator Lamar Alexander (R-Tenn.), chairman of the Senate Republican Conference, delivered a speech this week at the International V.M. Goldschmidt Conference in Knoxville.  Alexander serves on the Senate Environment and Public Works Committee and is the chairman of the Tennessee Valley Authority Congressional Caucus.  His remarks as prepared follow:
  • When
  • in a speech in Oak Ridge in May of 2009, I called for America to build 100 new nuclear plants during the next twenty years.  Nuclear power produces 70 percent of our pollution-free, carbon-free electricity today.  It is the most useful and reliable source of green electricity today because of its tremendous energy density and the small amount of waste that it produces.  And because we are harnessing the heat and energy of the earth itself through the power of the atom, nuclear power is also natural.
  • ...10 more annotations...
  • Forty years ago, nuclear energy was actually regarded as something of a savior for our environmental dilemmas because it didn’t pollute.  And this was well before we were even thinking about global warming or climate change.  It also didn’t take up a great deal of space.  You didn’t have to drown all of Glen Canyon to produce 1,000 megawatts of electricity.  Four reactors would equal a row of wind turbines, each one three times as tall as Neyland Stadium skyboxes, strung along the entire length of the 2,178-mile Appalachian Trail.   One reactor would produce the same amount of electricity that can be produced by continuously foresting an area one-and-a-half times the size of the Great Smoky Mountains National Park in order to create biomass.  Producing electricity with a relatively small number of new reactors, many at the same sites where reactors are already located, would avoid the need to build thousands and thousands of miles of new transmission lines through scenic areas and suburban backyards. 
  • While nuclear lost its green credentials with environmentalists somewhere along the way, some are re-thinking nuclear energy because of our new environmental paradigm – global climate change.  Nuclear power produces 70 percent of our carbon-free electricity today.  President Obama has endorsed it, proposing an expansion of the loan guarantee program from $18 billion to $54 billion and making the first award to the Vogtle Plant in Georgia.  Nobel Prize-winning Secretary of Energy Steven Chu wrote recently in The Wall Street Journal about developing a generation of mini-reactors that I believe we can use to repower coal boilers, or more locally, to power the Department of Energy’s site over in Oak Ridge.  The president, his secretary of energy, and many environmentalists may be embracing nuclear because of the potential climate change benefits, but they are now also remembering the other positive benefits of nuclear power that made it an environmental savior some 40 years ago
  • The Nature Conservancy took note of nuclear power’s tremendous energy density last August when it put out a paper on “Energy Sprawl.”  The authors compared the amount of space you need to produce energy from different technologies – something no one had ever done before – and what they came up with was remarkable.  Nuclear turns out to be the gold standard.  You can produce a million megawatts of electricity a year from a nuclear reactor sitting on one square mile.  That’s enough electricity to power 90,000 homes.  They even included uranium mining and the 230 square miles surrounding Yucca Mountain in this calculation and it still comes to only one square mile per million megawatt hours
  • And for all that, each turbine has the capacity to produce about one-and-a-half megawatts.  You need three thousand of these 50-story structures to equal the output of one nuclear reactor
  • When people say “we want to get our energy from wind,” they tend to think of a nice windmill or two on the horizon, waving gently – maybe I’ll put one in my back yard.   They don’t realize those nice, friendly windmills are now 50 stories high and have blades the length of football fields.  We see awful pictures today of birds killed by the Gulf oil spill.  But one wind farm in California killed 79 golden eagles in one year. The American Bird Conservancy says existing turbines can kill up to 275,000 birds a year.
  • Coal-fired electricity needs four square miles, because you have to consider all the land required for mining and extraction.  Solar thermal, where they use the big mirrors to heat a fluid, takes six square miles.  Natural gas takes eight square miles and petroleum takes 18 square miles – once again, including all the land needed for drilling and refining and storing and sending it through pipelines.  Solar photovoltaic cells that turn sunlight directly into electricity take 15 square miles and wind is even more dilute, taking 30 square miles to produce that same amount of electricity.
  • , wind power can be counted on to be there 10 to 15 percent of the time when you need it.  TVA can count on nuclear power 91 percent of the time, coal, 60 percent of the time and natural gas about 50 percent of the time.  This is why I believe it is a taxpayer rip-off for wind power to be subsidized per unit of electricity at a rate of 25 times the subsidy for all other forms of electricity combined. 
  • the “problem of nuclear waste” has been overstated because people just don’t understand the scale or the risk.  All the high-level nuclear waste that has ever been produced in this country would fit on a football field to a height of ten feet.  That’s everything.  Compare that to the billion gallons of coal ash that slid out of the coal ash impoundment at the Kingston plant and into the Emory River a year and a half ago, just west of here.  Or try the industrial wastes that would be produced if we try to build thousands of square miles of solar collectors or 50-story windmills.  All technologies produce some kind of waste.  What’s unique about nuclear power is that there’s so little of it.
  • Now this waste is highly radioactive, there’s no doubt about that.  But once again, we have to keep things in perspective.  It’s perfectly acceptable to isolate radioactive waste through storage.  Three feet of water blocks all radiation.  So does a couple of inches of lead and stainless steel or a foot of concrete.  That’s why we use dry cask storage, where you can load five years’ worth of fuel rods into a single container and store them right on site.  The Nuclear Regulatory Commission and Energy Secretary Steven Chu both say we can store spent fuel on site for 60 or 80 years before we have to worry about a permanent repository like Yucca Mountain
  • then there’s reprocessing.  Remember, we’re now the only major nuclear power nation in the world that is not reprocessing its fuel.  While we gave up reprocessing in the 1970s, the French have all their high-level waste from 30 years of producing 80 percent of their electricity stored beneath the floor of one room at their recycling center in La Hague.  That’s right; it all fits into one room.  And we don’t have to copy the French.  Just a few miles away at the Oak Ridge National Laboratory they’re working to develop advanced reprocessing technologies that go well beyond what the French are doing, to produce a waste that’s both smaller in volume and with a shorter radioactive life.  Regardless of what technology we ultimately choose, the amount of material will be astonishingly small.  And it’s because of the amazing density of nuclear technology – something we can’t even approach with any other form of energy
D'coda Dcoda

CPS must die [24Oct07} - 0 views

  • Collectively, Texas eats more energy than any other state, according to the U.S. Department of Energy. We’re fifth in the country when it comes to our per-capita energy intake — about 532 million British Thermal Units per year. A British Thermal Unit, or Btu, is like a little “bite” of energy. Imagine a wooden match burning and you’ve got a Btu on a stick. Of course, the consumption is with reason. Texas, home to a quarter of the U.S. domestic oil reserves, is also bulging with the second-highest population and a serious petrochemical industry. In recent years, we managed to turn ourselves into the country’s top producer of wind energy. Despite all the chest-thumping that goes on in these parts about those West Texas wind farms (hoist that foam finger!), we are still among the worst in how we use that energy. Though not technically “Southern,” Texans guzzle energy like true rednecks. Each of our homes use, on average, about 14,400 kilowatt hours per year, according to the U.S. Energy Information Administration. It doesn’t all have to do with the A/C, either. Arizonans, generally agreed to be sharing the heat, typically use about 12,000 kWh a year; New Mexicans cruise in at an annual 7,200 kWh. Don’t even get me started on California’s mere 6,000 kWh/year figure.
  • Let’s break down that kilowatt-hour thing. A watt is the energy of one candle burning down. (You didn’t put those matches away, did you?) A kilowatt is a thousand burnin’ candles. And a kilowatt hour? I think you can take it from there. We’re wide about the middle in Bexar, too. The average CPS customer used 1,538 kilowatt hours this June when the state average was 1,149 kWh, according to ERCOT. Compare that with Austin residents’ 1,175 kWh and San Marcos residents’ 1,130 kWh, and you start to see something is wrong. So, we’re wasteful. So what? For one, we can’t afford to be. Maybe back when James Dean was lusting under a fountain of crude we had if not reason, an excuse. But in the 1990s Texas became a net importer of energy for the first time. It’s become a habit, putting us behind the curve when it comes to preparing for that tightening energy crush. We all know what happens when growing demand meets an increasingly scarce resource … costs go up. As the pressure drop hits San Anto, there are exactly two ways forward. One is to build another massively expensive power plant. The other is to transform the whole frickin’ city into a de-facto power plant, where energy is used as efficiently as possible and blackouts simply don’t occur.
  • CPS has opted for the Super Honkin’ Utility model. Not only that — quivering on the brink of what could be a substantial efficiency program, CPS took a leap into our unflattering past when it announced it hopes to double our nuclear “portfolio” by building two new nuke plants in Matagorda County. The utility joined New Jersey-based NRG Energy in a permit application that could fracture an almost 30-year moratorium on nuclear power plant creation in the U.S.
  • ...17 more annotations...
  • CPS didn’t just pull nukes out of a hat when it went looking for energy options. CEO Milton Lee may be intellectually lazy, but he’s not stupid. Seeking to fulfill the cheap power mandate in San Antonio and beyond (CPS territory covers 1,566 square miles, reaching past Bexar County into Atascosa, Bandera, Comal, Guadalupe, Kendall, Medina, and Wilson counties), staff laid natural gas, coal, renewables and conservation, and nuclear side-by-side and proclaimed nukes triumphant. Coal is cheap upfront, but it’s helplessly foul; natural gas, approaching the price of whiskey, is out; and green solutions just aren’t ready, we’re told. The 42-member Nuclear Expansion Analysis Team, or NEAT, proclaimed “nuclear is the lowest overall risk considering possible costs and risks associated with it as compared to the alternatives.” Hear those crickets chirping?
  • NEAT members would hold more than a half-dozen closed-door meetings before the San Antonio City Council got a private briefing in September. When the CPS board assembled October 1 to vote the NRG partnership up or down, CPS executives had already joined the application pending with the U.S. Nuclear Regulatory Commission. A Supplemental Participation Agreement allowed NRG to move quickly in hopes of cashing in on federal incentives while giving San Antonio time to gather its thoughts. That proved not too difficult. Staff spoke of “overwhelming support” from the Citizen’s Advisory Board and easy relations with City staff. “So far, we haven’t seen any fatal flaws in our analysis,” said Mike Kotera, executive vice president of energy development for CPS. With boardmember and Mayor Phil Hardberger still in China inspecting things presumably Chinese, the vote was reset for October 29.
  • No one at the meeting asked about cost, though the board did request a month-by-month analysis of the fiasco that has been the South Texas Project 1&2 to be delivered at Monday’s meeting. When asked privately about cost, several CPS officers said they did not know what the plants would run, and the figure — if it were known — would not be public since it is the subject of contract negotiations. “We don’t know yet,” said Bob McCullough, director of CPS’s corporate communications. “We are not making the commitment to build the plant. We’re not sure at this point we really understand what it’s going to cost.” The $206 million outlay the board will consider on Monday is not to build the pair of 1,300-megawatt, Westinghouse Advanced Boiling Water Reactors. It is also not a contract to purchase power, McCullough said. It is merely to hold a place in line for that power.
  • It’s likely that we would come on a recurring basis back to the board to keep them apprised of where we are and also the decision of whether or not we think it makes sense for us to go forward,” said Larry Blaylock, director of CPS’s Nuclear Oversight & Development. So, at what point will the total cost of the new plants become transparent to taxpayers? CPS doesn’t have that answer. “At this point, it looks like in order to meet our load growth, nuclear looks like our lowest-risk choice and we think it’s worth spending some money to make sure we hold that place in line,” said Mark Werner, director of Energy Market Operations.
  • Another $10 million request for “other new nuclear project opportunities” will also come to the board Monday. That request summons to mind a March meeting between CPS officials and Exelon Energy reps, followed by a Spurs playoff game. Chicago-based Exelon, currently being sued in Illinois for allegedly releasing millions of gallons of radioactive wastewater beneath an Illinois plant, has its own nuclear ambitions for Texas. South Texas Project The White House champions nuclear, and strong tax breaks and subsidies await those early applicants. Whether CPS qualifies for those millions remains to be seen. We can only hope.
  • Consider, South Texas Project Plants 1&2, which send us almost 40 percent of our power, were supposed to cost $974 million. The final cost on that pair ended up at $5.5 billion. If the planned STP expansion follows the same inflationary trajectory, the price tag would wind up over $30 billion. Applications for the Matagorda County plants were first filed with the Atomic Energy Commission in 1974. Building began two years later. However, in 1983 there was still no plant, and Austin, a minority partner in the project, sued Houston Power & Lighting for mismanagement in an attempt to get out of the deal. (Though they tried to sell their share several years ago, the city of Austin remains a 16-percent partner, though they have chosen not to commit to current expansion plans).
  • After Unit 1 came online in 1988, it had to be shut down after water-pump shaft seared off in May, showering debris “all over the place,” according to Nucleonics Week. The next month two breakers failed during a test of backup power, leading to an explosion that sheared off a steam-generator pump and shot the shaft into the station yard. After the second unit went online the next year, there were a series of fires and failures leading to a half-million-dollar federal fine in 1993 against Houston Power. Then the plant went offline for 14 months. Not the glorious launch the partnership had hoped for. Today, CPS officials still do not know how much STP has cost the city, though they insist overall it has been a boon worth billions. “It’s not a cut-and-dried analysis. We’re doing what we can to try to put that in terms that someone could share and that’s a chore,” said spokesman McCollough. CPS has appealed numerous Open Records requests by the Current to the state Attorney General. The utility argues that despite being owned by the City they are not required to reveal, for instance, how much it may cost to build a plant or even how much pollution a plant generates, since the electricity market is a competitive field.
  • Even without good financial data, the Citizen’s Advisory Board has gone along with the plan for expansion. The board would be “pennywise and pound foolish” not to, since the city is already tied to STP 1&2, said at-large member Jeannie O’Sullivan. “Yes, in the past the board of CPS had been a little bit not as for taking on a [greater] percentage of nuclear power. I don’t know what their reasons were, I think probably they didn’t have a dialogue with a lot of different people,” O’Sullivan said.
  • A 2003 study at the Massachusetts Institute of Technology estimates the cost of nuclear power to exceed that of both coal and natural gas. A U.S. Energy Information Administration report last year found that will still be the case when and if new plants come online in the next decade. If ratepayers don’t pay going in with nuclear, they can bet on paying on the way out, when virtually the entire power plant must be disposed of as costly radioactive waste. The federal government’s inability to develop a repository for the tens of thousands of tons of nuclear waste means reactors across the country are storing spent fuel in onsite holding ponds. It is unclear if the waste’s lethality and tens of thousands of years of radioactivity were factored into NEAT’s glowing analysis.
  • The federal dump choice, Nevada’s Yucca Mountain, is expected to cost taxpayers more than $60 billion. If it opens, Yucca will be full by the time STP 3&4 are finished, requiring another federal dump and another trainload of greenbacks. Just the cost of Yucca’s fence would set you back. Add the price of replacing a chain-link fence around, let’s say, a 100-acre waste site. Now figure you’re gonna do that every 50 years for 10,000 years or more. Security guards cost extra. That is not to say that the city should skip back to the coal mine. Thankfully, we don’t need nukes or coal, according to the American Council for an Energy-Efficient Economy, a D.C.-based non-profit that champions energy efficiency. A collection of reports released this year argue that a combination of ramped-up efficiency programs, construction of numerous “combined heat and power” facilities, and installation of on-site renewable energy resources would allow the state to avoid building new power plants. Texas could save $73 billion in electric generation costs by spending $50 billion between now and 2023 on such programs, according to the research group. The group also claims the efficiency revolution would even be good for the economy, creating 38,300 jobs. If ACEEE is even mostly right, plans to start siphoning millions into a nuclear reservoir look none too inspired.
  • To jump tracks will take a major conversion experience inside CPS and City Hall, a turning from the traditional model of towering plants, reels of transmission line, and jillions of dependent consumers. CPS must “decentralize” itself, as cities as close as Austin and as far away as Seattle are doing. It’s not only economically responsible and environmentally sound, but it is the best way to protect our communities entering what is sure to be a harrowing century. Greening CPS CPS is grudgingly going greener. In 2004, a team of consultants, including Wisconsin-based KEMA Inc., hired to review CPS operations pegged the utility as a “a company in transition.” Executives interviewed didn’t understand efficiency as a business model. Even some managers tapped to implement conservation programs said such programs were about “appearing” concerned, according to KEMA’s findings.
  • While the review exposed some philosophical shortcomings, it also revealed for the first time how efficiency could transform San Antonio. It was technically possible, for instance, for CPS to cut electricity demand by 1,935 megawatts in 10 years through efficiency alone. While that would be accompanied with significant economic strain, a less-stressful scenario could still cut 1,220 megawatts in that period — eliminating 36 percent of 2014’s projected energy use. CPS’s current plans call for investing $96 million to achieve a 225-megawatt reduction by 2016. The utility plans to spend more than four times that much by 2012 upgrading pollution controls at the coal-fired J.T. Deely power plant.
  • In hopes of avoiding the construction of Spruce 2 (now being built, a marvel of cleanliness, we are assured), Citizen Oversight Committee members asked KEMA if it were possible to eliminate 500 megawatts from future demand through energy efficiency alone. KEMA reported back that, yes, indeed it was possible, but would represent an “extreme” operation and may have “unintended consequences.” Such an effort would require $620 million and include covering 90 percent of the cost of efficiency products for customers. But an interesting thing happens under such a model — the savings don’t end in 2012. They stretch on into the future. The 504 megawatts that never had to be generated in 2012 end up saving 62 new megawatts of generation in 2013 and another 53 megawatts in 2014. With a few tweaks on the efficiency model, not only can we avoid new plants, but a metaphorical flip of the switch can turn the entire city into one great big decentralized power generator.
  • How do we usher in this new utopia of decentralized power? First, we have to kill CPS and bury it — or the model it is run on, anyway. What we resurrect in its place must have sustainability as its cornerstone, meaning that the efficiency standards the City and the utility have been reaching for must be rapidly eclipsed. Not only are new plants not the solution, they actively misdirect needed dollars away from the answer. Whether we commit $500 million to build a new-fangled “clean-coal” power plant or choose to feed multiple billions into a nuclear quagmire, we’re eliminating the most plausible option we have: rapid decentralization.
  • For this, having a City-owned utility offers an amazing opportunity and gives us the flexibility to make most of the needed changes without state or federal backing. “Really, when you start looking, there is a lot more you can do at the local level,” said Neil Elliott of the ACEEE, “because you control building codes. You control zoning. You can control siting. You can make stuff happen at the local level that the state really doesn’t have that much control of.” One of the most empowering options for homeowners is homemade energy provided by a technology like solar. While CPS has expanded into the solar incentives field this year, making it only the second utility in the state to offer rebates on solar water heaters and rooftop panels, the incentives for those programs are limited. Likewise, the $400,000 CPS is investing at the Pearl Brewery in a joint solar “project” is nice as a white tiger at a truck stop, but what is truly needed is to heavily subsidize solar across the city to help kickstart a viable solar industry in the state. The tools of energy generation, as well as the efficient use of that energy, must be spread among the home and business owners.
  • Joel Serface, with bulb-polished pate and heavy gaze, refers to himself as a “product of the oil shock” who first discovered renewables at Texas Tech’s summer “geek camp.” The possibilities stayed with him through his days as a venture capitalist in Silicon Valley and eventually led him to Austin to head the nation’s first clean-energy incubation center. Serface made his pitch at a recent Solar San Antonio breakfast by contrasting Texas with those sun-worshipping Californians. Energy prices, he says, are “going up. They’re not going down again.” That fact makes alternative energies like solar, just starting to crack the 10-cent-per-killowatt barrier, financially viable. “The question we have to solve as an economy is, ‘Do we want to be a leader in that, or do we want to allow other countries [to outpace us] and buy this back from them?’” he asked.
  • To remain an energy leader, Texas must rapidly exploit solar. Already, we are fourth down the list when it comes not only to solar generation, but also patents issued and federal research awards. Not surprisingly, California is kicking silicon dust in our face.
D'coda Dcoda

Cesium-137 flow into sea 30 times greater than stated by TEPCO: report [29Oct11] - 0 views

  • The amount of radioactive cesium-137 that flowed into the Pacific after the start of Japan's nuclear crisis was probably nearly 30 times the amount stated by Tokyo Electric Power Co. in May, according to a recent report by a French research institute.
  • The Institute for Radiological Protection and Nuclear Safety said the amount of the isotope that flowed into the ocean from the Fukushima Daiichi nuclear plant between March 21 and mid-July reached an estimated 27.1 quadrillion becquerels. A quadrillion is equivalent to 1,000 trillion. Of the amount, 82 percent had flowed into the sea by April 8, according to the study, which noted that the amount released as a result of the disaster triggered by the March 11 earthquake and tsunami was unprecedented. The report also said the Pacific was polluted at an exceptional speed because the plant stands in a coastal area with strong currents, though it said the impact of the contamination on marine life in remote waters is likely to wane from autumn.
  • But the institute warned that a significant degree of pollution would remain in waters off the coast of Fukushima Prefecture, northeast of Tokyo. Radioactive cesium-137 has a half life of around 30 years.
Jan Wyllie

Physician: International medical community must immediately assist Japanese - Radioacti... - 1 views

  • : Dr. Helen Caldicott
  • All areas of Japan should be tested to assess how radioactive the soil and water are because the winds can blow the radioactive pollution hundreds of miles from the point source at Fukushima. Under no circumstances should radioactive rubbish and debris be incinerated as this simply spreads the isotopes far and wide to re-concentrate in food and fish. All batches of food must be adequately tested for specific radioactive elements using spectrometers. No radioactive food must be sold or consumed, nor must radioactive food be diluted for sale with non-radioactive food as radioactive elements re-concentrate in various bodily organs. All water used for human consumption should be tested weekly. All fish caught off the east coast must be tested for years to come. All people, particularly children, pregnant women and women of childbearing age still living in high radiation zones should be immediately evacuated to non-radioactive areas of Japan. All people who have been exposed to radiation from Fukushima – particularly babies, children, immunosuppressed, old people and others — must be medically thoroughly and routinely examined for malignancy, bone marrow suppression, diabetes, thyroid abnormalities, heart disease, premature aging, and cataracts for the rest of their lives and appropriate treatment instituted. Leukemia will start to manifest within the next couple of years, peak at five years and solid cancers will start appearing 10 to 15 years post-accident and will continue to increase in frequency in this generation over the next 70 to 90 years. All physicians and medical care providers in Japan must read and examine Chernobyl–Consequences of the Catastrophe for People and the Environment by the New York Academy of Sciences to understand the true medical gravity of the situation they face. I also suggest with humility that doctors in particular but also politicians and the general public refer to my web page, nuclearfreeplanet.org for more information, that they listen to the interviews related to Fukushima and Chernobyl on my radio program at ifyoulovethisplanet.org and they read my book NUCLEAR POWER IS NOT THE ANSWER. The international medical community and in particular the WHO must be mobilized immediately to assist the Japanese medical profession and politicians to implement this massive task outlined above. The Japanese government must be willing to accept international advice and help. As a matter of extreme urgency Japan must request and receive international advice and help from the IAEA and the NRC in the U.S., and nuclear specialists from Canada, Europe, etc., to prevent the collapse of Fukushima Dai-ichi Unit 4 and the spent fuel pool if there was an earthquake greater than 7 on the Richter scale.As the fuel pool crashed to earth it would heat and burn causing a massive radioactive release 10 times larger than the release from Chernobyl. There is no time to spare and at the moment the world community sits passively by waiting for catastrophe to happen. The international and Japanese media must immediately start reporting the facts from Japan as outlined above. Not to do so is courting global disaster.
  •  
    Like is the wrong word, totally! Will share, thanks for the heads up.
D'coda Dcoda

German Scientist - No Way To Stop Melted Fuel [06Dec11] - 0 views

  • Dr. Sebastian Pflugbeil, the chairman of German Society of Radiation Protection had a lecture in Berlin,and talked about Tokyo. To the question about what we can do to minimize the damage of the accident, he answered: “Nothing. There is no way to stop the nuclear fuel that has melted-through leaking. All we could do is to pray for the fuel not to touch the underground water vein. We must avoid internal exposure from contaminated food. Authorities are trying to make Japanese eat polluted food for their twisted patriotism, but on the other hand, citizens are setting up independent labs around Japan. This is very important. However, lab facility costs are huge. Maintenance, recording the data costs too. Now, the best thing Germans can do is to support those independent facilities financially.”
  • To another question “How dangerous Tokyo is now?” He answered: “Tokyo is not the safe area. Now Tokyo is in the similar situation to Kiev in Chernobyl. Ukrainian Government couldn’t define that densely populated area, Kiev, as evacuating area so they did not admit Kiev was threatened and manipulated the radiation map to look like Plutonium stopped just before Kiev.” Around in Kiev, there were 11 million children in 1990, and now there are 8 million. However, the number of deformed babies is the same, which means the ratio of deformation is increasing. Low dose exposure obviously affects DNA. Only 10 % of babies sent to Kiev hospital can live longer than 1 year.
D'coda Dcoda

Tepco: Recent quake caused water level drop in tank next to Spent Fuel Pool No. 4 [02Ja... - 0 views

  • UPDATE* EX-SKF has a translation of Tepco’s press release: Fukushima Reactor 4 Skimmer Surge Tank Latest: Earthquake Caused the Water to Go from SFP to Reactor Well Instead, Says TEPCO “Tepco officially admitted the decreasing water level of the tank at reactor 4 was caused by the earthquake on 1/1/2012. (Source) Tepco states the water did not flow into the tank from water cooling system but flew into the container vessel in stead. However they still have not announced they managed to fixed the broken part of the reactor.” -Fukushima Diary Mainichi Shimbun, January 2, 2012:
  • Google Translate Headline: <1 Fukushima nuclear power plant> No. 4 tank drawdown effects of earthquakes and announced …
  • TEPCO two days, the water level decreased by more than one day of the tank adjacent to the spent fuel pool of the first nuclear power plant Unit 4, Fukushima, said the cause, effects of earthquakes announced four largest intensity observed in northeastern Kanto was. TEPCO, flows into the opposite side of the reactor containment tank of radioactive contamination in pool water, and found that it caused by loss of water supply to the tank from a temporary pool. The cooling effect of the pool, he said. According to TEPCO, the tank water level is usually about 1.6 inches per hour, such as reduced natural evaporation, after the earthquake, were down by 8-9 cm per hour. Polluted water in the tank is removed from heat and dust through the filter and an external heat exchanger and returned to the pool again.
D'coda Dcoda

Bird numbers plummet around stricken Fukushima plant [03Feb12] - 0 views

  • Researchers working around Japan's disabled Fukushima Daiichi nuclear plant say bird populations there have begun to dwindle, in what may be a chilling harbinger of the impact of radioactive fallout on local life. In the first major study of the impact of the world's worst nuclear crisis in 25 years, the researchers, from Japan, the US and Denmark, said their analysis of 14 species of bird common to Fukushima and Chernobyl, the Ukrainian city which suffered a similar nuclear meltdown, showed the effect on abundance is worse in the Japanese disaster zone.
  • The study, published next week in the journal Environmental Pollution, suggests that its findings demonstrate "an immediate negative consequence of radiation for birds during the main breeding season [of] March [to] July".Two of the study's authors have spent years working in the irradiated 2,850 sq metre zone around the Chernobyl single-reactor plant, which exploded in 1986 and showered much of Europe with caesium, strontium, plutonium and other radioactive toxins. A quarter of a century later, the region is almost devoid of people.
  • Timothy Mousseau and Anders Pape Moller say their research uncovered major negative effects among the bird population, including reductions in longevity and in male fertility, and birds with smaller brains.Many species show "dramatically" elevated DNA mutation rates, developmental abnormalities and extinctions, they add, while insect life has been significantly reduced.
1 - 20 of 49 Next › Last »
Showing 20 items per page