Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged production

Rss Feed Group items tagged

D'coda Dcoda

German Nuclear Decommissioning and Renewables Build-Out [23Oct11] - 0 views

  • Germany will be redirecting its economy towards renewable energy, because of the political decision to decommission its nuclear plants, triggered by the Fukushima event in Japan and subsequent public opposition to nuclear energy. Germany's decision would make achieving its 2020 CO2 emission reduction targets more difficult.   To achieve the CO2 emissions reduction targets and replace nuclear energy, renewable energy would need to scale up from 17% in 2010 to 57% of total electricity generation of 603 TWh in 2020, according to a study by The Breakthrough Institute. As electricity generation was 603 TWh in 2010, increased energy efficiency measures will be required to flat-line electricity production during the next 9 years.   Germany has 23 nuclear reactors (21.4 GW), 8 are permanently shut down (8.2 GW) and 15 (13.2 GW) will be shut down by 2022. Germany will be adding a net of 5 GW of coal plants, 5 GW of new CCGT plants and 1.4 GW of new biomass plants in future years. The CCGT plants will reduce the shortage of quick-ramping generation capacity for accommodating variable wind and solar energy to the grid.
  • Germany is planning a $14 billion build-out of transmission systems for onshore and future offshore wind energy in northern Germany and for augmented transmission with France for CO2-free hydro and nuclear energy imports to avoid any shortages.    Germany had fallen behind on transmission system construction in the north because of public opposition and is using the nuclear plant shutdown as leverage to reduce public opposition. Not only do people have to look at a multitude of 450-ft tall wind turbines, but also at thousands of 80 to 135 ft high steel structures and wires of the transmission facilities.   The $14 billion is just a minor down payment on the major grid reorganization required due to the decommissioning of the nuclear plants and the widely-dispersed build-outs of renewables. The exisitng grid is mostly large-central-plant based. 
  • This article includes the estimated capital costs of shutting down Germany's nuclear plants, reorganizing the grids of Germany and its neighbors, and building out renewables to replace the nuclear energy.    Germany’s Renewable Energy Act (EEG) in 2000, guarantees investors above-market fees for solar power for 20 years from the point of installation. In 2010, German investments in  renewables was about $41.2 billion, of which about $36.1 billion in 7,400 MW of solar systems ($4,878/kW). In 2010, German incentives for all renewables was about $17.9 billion, of which about half was for solar systems.   The average subsidy in 2010 was about ($9 billion x 1 euro/1.4 $)/12 TWh = 53.6 eurocents/kWh; no wonder solar energy is so popular in Germany. These subsidies are rolled into electric rates as fees or taxes, and will ultimately make Germany less competitive in world markets.   http://thebreakthrough.org/blog//2011/06/analysis_germanys_plan_to_phas-print.html http://mobile.bloomberg.com/news/2011-05-31/merkel-faces-achilles-heel-in-grids-to-unplug-german-nuclear.html http://www.theecologist.org/News/news_analysis/829664/revealed_how_your_country_compares_on_renewable_investment.html http://en.wikipedia.org/wiki/Solar_power_in_Germany  
  • ...12 more annotations...
  • SUMMARY OF ESTIMATED CAPITAL AND OTHER COSTS   The estimated capital costs and other costs for decommissioning the nuclear plants, restoring the sites, building out renewables, wind and solar energy balancing plants, and reorganizing electric grids over 9 years are summarized below.    The capital cost and subsidy cost for the increased energy efficiency measures was not estimated, but will likely need to be well over $180 billion over 9 years, or $20 billion/yr, or $20 b/($3286 b in 2010) x 100% = 0.6% of GDP, or $250 per person per yr.     Decommission nuclear plants, restore sites: 23 @ $1 billion/plant = $23 billion Wind turbines, offshore: 53,300 MW @ $4,000,000/MW = $213.2 billion   Wind turbines, onshore: 27,900 MW @ $2,000,000/MW = $55.8 billion Wind feed-in tariff extra costs rolled into electric rates over 9 years: $200 billion  Solar systems: 82,000 MW @ $4,500,000/MW = $369 billion Solar feed-in tariff extra costs rolled into electric rates over 9 years = $250 billion. Wind and solar energy balancing plants: 25,000 MW of CCGTs @ $1,250,000/MW = $31.3 billion Reorganizing European elecric grids tied to German grids: $150 billion
  • RENEWABLE ENERGY AND ENERGY EFFICIENCY TARGETS   In September 2010 the German government announced the following targets:   Renewable electricity - 35% by 2020 and 80% by 2050 Renewable energy - 18% by 2020, 30% by 2030, and 60% by 2050 Energy efficiency - Reducing the national electricity consumption 50% below 2008 levels by 2050.  http://en.wikipedia.org/wiki/Renewable_energy_in_Germany   Germany has a target to reduce its nation-wide CO2 emissions from all sources by 40% below 1990 levels by 2020 and 80-85% below 1990 levels by 2050. That goal could be achieved, if 100% of electricity is generated by renewables, according to Mr. Flasbarth. Germany is aiming to convince the rest of Europe to follow its lead.
  • A 2009 study by EUtech, engineering consultants, concluded Germany will not achieve its nation-wide CO2 emissions target; the actual reduction will be less than 30%. The head of Germany's Federal Environment Agency (UBA), Jochen Flasbarth, is calling for the government to improve CO2 reduction programs to achieve targets. http://www.spiegel.de/international/germany/0,1518,644677,00.html   GERMAN RENEWABLE ENERGY TO-DATE   Germany announced it had 17% of its electrical energy from renewables in 2010; it was 6.3% in 2000. The sources were 6.2% wind, 5.5% biomass, 3.2% hydro and 2.0% solar. Electricity consumption in 2010 was 603 TWh (production) - 60 TWh (assumed losses) = 543 TWh http://www.volker-quaschning.de/datserv/ren-Strom-D/index_e.php  
  • Wind: At the end of 2010, about 27,200 MW of onshore and offshore wind turbines was installed in Germany at a capital cost of about $50 billion. Wind energy produced was 37.5 TWh, or 6.2% of total production. The excess cost of the feed-in-tariff energy bought by utilities and rolled into electricity costs of rate payers was about $50 billion during the past 11 years.   Most wind turbines are in northern Germany. When wind speeds are higher wind curtailment of 15 to 20 percent takes place because of insufficient transmission capacity and quick-ramping gas turbine plants. The onshore wind costs the Germany economy about 12 eurocent/kWh and the offshore wind about 24 eurocent/kWh. The owners of the wind turbines are compensated for lost production.   The alternative to curtailment is to “sell” the energy at European spot prices of about 5 eurocent/kWh to Norway and Sweden which have significant hydro capacity for balancing the variable wind energy; Denmark has been doing it for about 20 years.   As Germany is very marginal for onshore wind energy (nation-wide onshore wind CF 0.167) and nearly all of the best onshore wind sites have been used up, or are off-limits due to noise/visual/environmental impacts, most of the additional wind energy will have to come from OFFSHORE facilities which produce wind energy at about 2 to 3 times the cost of onshore wind energy. http://theenergycollective.com/willem-post/61774/wind-energy-expensive
  • Biomass: At the end of 2010, about 5,200 MW of biomass was installed at a capital cost of about $18 billion. Biomass energy produced was 33.5 TWh, or 5.5% of production. Plans are to add 1,400 MW of biomass plants in future years which, when fully implemented, would produce about 8.6 TWh/yr.   Solar: At the end of 2010, about 17,320 MW of PV solar was installed in Germany at a capital cost of about $100 billion. PV solar energy produced was 12 TWh, or 2% of total production. The excess cost of the feed-in-tariff energy bought by utilities and rolled into the electricity costs of rate payers was about $80 billion during the past 11 years.   Most solar panels are in southern Germany (nation-wide solar CF 0.095). When skies are clear, the solar production peaks at about 7 to 10 GW. Because of insufficient capacity of transmission and quick-ramping gas turbine plants, and because curtailment is not possible, part of the solar energy, produced at a cost to the German economy of about 30 to 50 eurocent/kWh is “sold” at European spot prices of about 5 eurocent/kWh to France which has significant hydro capacity for balancing the variable solar energy. http://theenergycollective.com/willem-post/46142/impact-pv-solar-feed-tariffs-germany  
  • Hydro: At the end of 2010, about 4,700 MW of hydro was installed. Hydro energy produced was 19.5 TWh, or 3.2% of production. Hydro growth has been stagnant during the past 20 years. See below website.   As it took about $150 billion of direct investment, plus about $130 billion excess energy cost during the past 11 years to achieve 8.2% of total production from solar and wind energy, and assuming hydro will continue to have little growth, as was the case during the past 20 years (almost all hydro sites have been used up), then nearly all of the renewables growth by 2020 will be mostly from wind, with the remainder from solar and biomass. http://www.renewableenergyworld.com/rea/news/article/2011/03/new-record-for-german-renewable-energy-in-2010??cmpid=WNL-Wednesday-March30-2011   Wind and Solar Energy Depend on Gas: Wind and solar energy is variable and intermittent. This requires quick-ramping gas turbine plants to operate at part-load and quickly ramp up with wind energy ebbs and quickly ramp down with wind energy surges; this happens about 100 to 200 times a day resulting in increased wear and tear. Such operation is very inefficient for gas turbines causing them to use extra fuel/kWh and emit extra CO2/kWh that mostly offset the claimed fuel and CO2 reductions due to wind energy. http://theenergycollective.com/willem-post/64492/wind-energy-reduces-co2-emissions-few-percent  
  • Wind energy is often sold to the public as making a nation energy independent, but Germany will be buying gas mostly from Russia supplied via the newly constructed pipeline under the Baltic Sea from St. Petersburg to Germany, bypassing Poland.   GERMANY WITHOUT NUCLEAR ENERGY   A study performed by The Breakthrough Institute concluded to achieve the 40% CO2 emissions reduction target and the decommissioning of 21,400 MW of nuclear power plants by 2022, Germany’s electrical energy mix would have to change from 60% fossil, 23% nuclear and 17% renewables in 2010 to 43% fossil and 57% renewables by 2020. This will require a build-out of renewables, reorganization of Europe’s electric grids (Europe’s concurrence will be needed) and acceleration of energy efficiency measures.   According to The Breakthrough Institite, Germany would have to reduce its total electricity consumption by about 22% of current 2020 projections AND achieve its target for 35% electricity generated from renewables by 2020. This would require increased energy efficiency measures to effect an average annual decrease of the electricity consumption/GDP ratio of 3.92% per year, significantly greater than the 1.47% per year decrease assumed by the IEA's BAU forecasts which is based on projected German GDP growth and current German efficiency policies.
  • The Breakthrough Institute projections are based on electricity consumption of 544  and 532 TWh  in 2008 and 2020, respectively; the corresponding production is 604 TWh in 2008 and 592 TWh in 2020.   http://thebreakthrough.org/blog//2011/06/analysis_germanys_plan_to_phas-print.html http://www.iea.org/textbase/nppdf/free/2007/germany2007.pdf   Build-out of Wind Energy: If it is assumed the current wind to solar energy ratio is maintained at 3 to 1, the wind energy build-out will be 80% offshore and 20% onshore, and the electricity production will be 592 TWh, then the estimated capital cost of the offshore wind turbines will be [{0.57 (all renewables) - 0.11 (assumed biomass + hydro)} x 592 TWh x 3/4] x 0.8 offshore/(8,760 hr/yr x average CF 0.35) = 0.0533 TW offshore wind turbines @ $4 trillion/TW = $213 billion and of the onshore wind turbines will be [{0.57 (all renewables) - 0.11 (assumed biomass + hydro)} x 592 TWh x 3/4] x 0.2 onshore/(8,760 hr/yr x average CF 0.167) = 0.279 TW of wind turbines @ $2 trillion/TW = $56 billion, for a total of $272 billion. The feed in tariff subsidy for 9 years, if maintained similar to existing subsidies to attract adequate capital, will be about $150 billion offshore + $50 billion onshore, for a total of $200 billion.    
  • Note: The onshore build-out will at least double Germany’s existing onshore wind turbine capacity, plus required transmission systems; i.e., significant niose, environmental and visual impacts over large areas.   Recent studies, based on measured, real-time, 1/4-hour grid operations data sets of the Irish, Colorado and Texas grids, show wind energy does little to reduce CO2 emissions. Such data sets became available during the past 2 to 3 years. Prior studies, based on assumptions, estimates, modeling scenarios, and statistics, etc., significantly overstate CO2 reductions.  http://theenergycollective.com/willem-post/64492/wind-energy-reduces-co2-emissions-few-percent   Build-out of PV Solar Energy: The estimated capital cost of the PV solar capacity will be [{0.57 (all renewables) - 0.11 (assumed biomass + hydro)} x 592 TWh x 1/4]/(8,760 hr/yr x average CF 0.095) = 0.082 TW @ $4.5 trillion/TW = $369 billion. The feed in tariff subsidy, if maintained similar to existing subsidies to attract adequate capital, will be about $250 billion.   Reorganizating Electric Grids: For GW reasons, a self-balancing grid system is needed to minimize CO2 emissions from gas-fired CCGT balancing plants. One way to implement it is to enhance the interconnections of the national grids with European-wide HVDC overlay systems (owning+O&M costs, including transmission losses), and with European-wide selective curtailment of wind energy, and with European-wide demand management and with pumped hydro storage capacity. These measures will reduce, but not eliminate, the need for balancing energy, at greater wind energy penetrations during high-windspeed weather conditions, as frequently occur in Iberia (Spain/Portugal).  
  • European-wide agreement is needed, the capital cost will be in excess of $150 billion and the adverse impacts on quality of life (noise, visuals, psychological), property values and the environment will be significant over large areas.    Other Capital Costs: The capacity of the quick-ramping CCGT balancing plants was estimated at 25,000 MW; their capital cost is about 25,000 MW x $1,250,000/MW = $31.3 billion. The capital costs of decommissioning and restoring the sites of the 23 nuclear plants will be about $23 billion.   Increased Energy Efficiency: Increased energy efficiency would be more attractive than major build-outs of renewables, because it provides the quickest and biggest "bang for the buck", AND it is invisible, AND it does not make noise, AND it has minimal environmental impact, AND it usually reduces at least 3 times the CO2 per invested dollar, AND it usually creates at least 3 times the jobs per invested dollar, AND it usually creates at least 3 times the energy reduction per invested dollar, AND it does all this without public resistance and controversy.   Rebound, i.e., people going back to old habits of wasting energy, is a concept fostered by the PR of proponents of conspicuous consumption who make money on such consumption. People with little money love their cars getting 35-40 mpg, love getting small electric and heating bills. The rebound is mostly among people who do not care about such bills.
  • A MORE RATIONAL APPROACH   Global warming is a given for many decades, because the fast-growing large economies of the non-OECD nations will have energy consumption growth far outpacing the energy consumption growth of the slow-growing economies of the OECD nations, no matter what these OECD nations do regarding reducing CO2 emissions of their economies.   It is best to PREPARE for the inevitable additional GW by requiring people to move away from flood-prone areas (unless these areas are effectively protected, as in the Netherlands), requiring new  houses and other buildings to be constructed to a standard such as the Passivhaus standard* (such buildings stay cool in summer and warm in winter and use 80 to 90 percent less energy than standard buildings), and requiring the use of new cars that get at least 50 mpg, and rearranging the world's societies for minimal energy consumption; making them walking/bicycling-friendly would be a good start.   If a nation, such as the US, does not do this, the (owning + O&M) costs of its economy will become so excessive (rising resource prices, increased damage and disruptions from weather events) that its goods and services will become less competitive and an increasing percentage of its population will not be able to afford a decent living standard in such a society.   For example: In the US, the median annual household income (inflation-adjusted) was $49,445, a decline of 7% since 2000. As the world’s population increases to about 10 billion by 2050, a triage-style rationing of resources will become more prevalent. http://www.usatoday.com/news/nation/story/2011-09-13/census-household-income/50383882/1
  • * A 2-year-old addition to my house is built to near-Passivhaus standards; its heating system consists of a thermostatically-controlled 1 kW electric heater, set at 500 W, that cycles on/off on the coldest days for less than 100 hours/yr. The addition looks inside and out entirely like standard construction. http://theenergycollective.com/willem-post/46652/reducing-energy-use-houses
  •  
    Excellent, lengthy article , lots of data
D'coda Dcoda

The yellow powder might be plutonium [25Sep11] - 0 views

  • About the previous post http://fukushima-diary.com/2011/09/news-japan-after-the-typhoon/ I received a message from a reader of this blog. It was to suggest the yellow powder could be plutonium. Here is the explanation. http://sti.srs.gov/fulltext/ms2002705/ms2002705.html source for text below
  • Plutonium-239 is one of the two fissile materials used for the production of nuclear weapons and in some nuclear reactors as a source of energy. The other fissile material is uranium-235. Plutonium-239 is virtually nonexistent in nature. It is made by bombarding uranium-238 with neutrons in a nuclear reactor. Uranium-238 is present in quantity in most reactor fuel; hence plutonium-239 is continuously made in these reactors. Since plutonium-239 can itself be split by neutrons to release energy, plutonium-239 provides a portion of the energy generation in a nuclear reactor. The physical properties of plutonium metal are summarized in Table 1.
  • Only two plutonium isotopes have commercial and military applications. Plutonium-238, which is made in nuclear reactors from neptunium-237, is used to make compact thermoelectric generators; plutonium-239 is used for nuclear weapons and for energy; plutonium-241, although fissile, (see next paragraph) is impractical both as a nuclear fuel and a material for nuclear warheads. Some of the reasons are far higher cost , shorter half-life, and higher radioactivity than plutonium-239. Isotopes of plutonium with mass numbers 240 through 242 are made along with plutonium-239 in nuclear reactors, but they are contaminants with no commercial applications. In this fact sheet we focus on civilian and military plutonium (which are interchangeable in practice–see Table 5), which consist mainly of plutonium-239 mixed with varying amounts of other isotopes, notably plutonium-240, -241, and -242.
  • ...9 more annotations...
  • Plutonium belongs to the class of elements called transuranic elements whose atomic number is higher than 92, the atomic number of uranium. Essentially all transuranic materials in existence are manmade. The atomic number of plutonium is 94. Plutonium has 15 isotopes with mass numbers ranging from 232 to 246. Isotopes of the same element have the same number of protons in their nuclei but differ by the number of neutrons. Since the chemical characteristics of an element are governed by the number of protons in the nucleus, which equals the number of electrons when the atom is electrically neutral (the usual elemental form at room temperature), all isotopes have nearly the same chemical characteristics. This means that in most cases it is very difficult to separate isotopes from each other by chemical techniques.
  • Plutonium-239 and plutonium-241 are fissile materials. This means that they can be split by both slow (ideally zero-energy) and fast neutrons into two new nuclei (with the concomitant release of energy) and more neutrons. Each fission of plutonium-239 resulting from a slow neutron absorption results in the production of a little more than two neutrons on the average. If at least one of these neutrons, on average, splits another plutonium nucleus, a sustained chain reaction is achieved.
  • The even isotopes, plutonium-238, -240, and -242 are not fissile but yet are fissionable–that is, they can only be split by high energy neutrons. Generally, fissionable but non-fissile isotopes cannot sustain chain reactions; plutonium-240 is an exception to that rule. The minimum amount of material necessary to sustain a chain reaction is called the critical mass. A supercritical mass is bigger than a critical mass, and is capable of achieving a growing chain reaction where the amount of energy released increases with time.
  • The amount of material necessary to achieve a critical mass depends on the geometry and the density of the material, among other factors. The critical mass of a bare sphere of plutonium-239 metal is about 10 kilograms. It can be considerably lowered in various ways. The amount of plutonium used in fission weapons is in the 3 to 5 kilograms range. According to a recent Natural Resources Defense Council report (1), nuclear weapons with a destructive power of 1 kiloton can be built with as little as 1 kilogram of weapon grade plutonium(2). The smallest theoretical critical mass of plutonium-239 is only a few hundred grams.
  • In contrast to nuclear weapons, nuclear reactors are designed to release energy in a sustained fashion over a long period of time. This means that the chain reaction must be controlled–that is, the number of neutrons produced needs to equal the number of neutrons absorbed. This balance is achieved by ensuring that each fission produces exactly one other fission. All isotopes of plutonium are radioactive, but they have widely varying half-lives. The half-life is the time it takes for half the atoms of an element to decay. For instance, plutonium-239 has a half-life of 24, 110 years while plutonium-241 has a half-life of 14.4 years. The various isotopes also have different principal decay modes. The isotopes present in commercial or military plutonium-239 are plutonium-240, -241, and -242. Table 2 shows a summary of the radiological properties of five plutonium isotopes. The isotopes of plutonium that are relevant to the nuclear and commercial industries decay by the emission of alpha particles, beta particles, or spontaneous fission. Gamma radiation, which is penetrating electromagnetic radiation, is often associated with alpha and beta decays.
  • Table 3 describes the chemical properties of plutonium in air. These properties are important because they affect the safety of storage and of operation during processing of plutonium. The oxidation of plutonium represents a health hazard since the resulting stable compound, plutonium dioxide is in particulate form that can be easily inhaled. It tends to stay in the lungs for long periods, and is also transported to other parts of the body. Ingestion of plutonium is considerably less dangerous since very little is absorbed while the rest passes through the digestive system.
  • Plutonium-239 is formed in both civilian and military reactors from uranium-238. The subsequent absorption of a neutron by plutonium-239 results in the formation of plutonium-240. Absorption of another neutron by plutonium-240 yields plutonium-241. The higher isotopes are formed in the same way. Since plutonium-239 is the first in a string of plutonium isotopes created from uranium-238 in a reactor, the longer a sample of uranium-238 is irradiated, the greater the percentage of heavier isotopes. Plutonium must be chemically separated from the fission products and remaining uranium in the irradiated reactor fuel. This chemical separation is called reprocessing. Fuel in power reactors is irradiated for longer periods at higher power levels, called high “burn-up”, because it is fuel irradiation that generates the heat required for power production. If the goal is production of plutonium for military purposes then the “burn-up” is kept low so that the plutonium-239 produced is as pure as possible, that is, the formationo of the higher isotopes, particularly plutonium-240, is kept to a minimum. Plutonium has been classified into grades by the US DOE (Department of Energy) as shown in Table 5.
  • It is important to remember that this classification of plutonium according to grades is somewhat arbitrary. For example, although “fuel grade” and “reactor grade” are less suitable as weapons material than “weapon grade” plutonium, they can also be made into a nuclear weapon, although the yields are less predictable because of unwanted neutrons from spontaneous fission. The ability of countries to build nuclear arsenals from reactor grade plutonium is not just a theoretical construct. It is a proven fact. During a June 27, 1994 press conference, Secretary of Energy Hazel O’Leary revealed that in 1962 the United States conducted a successful test with “reactor grade” plutonium. All grades of plutonium can be used as weapons of radiological warfare which involve weapons that disperse radioactivity without a nuclear explosion.
  • Benedict, Manson, Thomas Pigford, and Hans Wolfgang Levi, Nuclear Chemical Engineering, 2d ed. (New York: McGraw Hill Book Company, 1981). Wick, OJ, Editor, Plutonium Handbook: A Guide to the Technology, vol I and II, (La Grange Park, Illinois: American Nuclear Society, 1980). Cochran, Thomas B., William M. Arkin, and Milton M. Honig, Nuclear Weapons Databook, Vol I, Natural Resources Defense Council. (Cambridge, Massachusetts: Ballinger Publishing Company, 1984) Plutonium(IV) oxide is the chemical compound with the formula PuO2. This high melting point solid is a principal compound of plutonium. It can vary in color from yellow to olive green, depending on the particle size, temperature and method of production.[1]
  •  
    excellent article explains plutonium
Dan R.D.

Power Generation from Renewables Surpasses Nuclear [08Jul11] - 0 views

shared by Dan R.D. on 10 Jul 11 - No Cached
  • The latest issue of the Monthly Energy Review published by the US Energy Information Administration, electric power generation from renewable sources has surpassed production from nuclear sources, and is now "closing in on oil," says Ken Bossong Executive Director of the Sun Day Campaign.
  • In the first quarter of 2011 renewable energy sources accounted for 11.73 percent of US domestic energy production. Renewable sources include solar, wind, geothermal, hydro, biomass/biofuel. As of the first quarter of 2011, energy production from these sources was 5.65 percent more than production from nuclear.
  • As Bossing further explains from the report, renewable sources are closing the gap with generation from oil-fired sources, with renewable source equal to 77.15 percent of total oil based generation.
  • ...2 more annotations...
  • For all sectors, including transportation, thermal, and electrical generation, renewable energy production grew just over 15 percent in the first quarter of 2011 compared to the first quarter of 2010, and fully 25 percent over first quarter 2009. In a break-down of renewable sources, biomass/biofuel accounted for a bit more than 48 percent, hydro for 35.41 percent, wind for nearly 13 percent, geothermal 2.45 percent, and solar at 1.16 percent.
  • Looking at just the electrical generation sector, renewable sources, including hydro, accounted for nearly 13 percent of net US electrical generation in the first quarter of 2011, up from 10.31 percent for the same quarter last year. Non-hydro renewable sources accounted for 4.74 percent of net US production.
D'coda Dcoda

"Dilute and Sell" - #Radioactive Tea Blended with Non-Radioactive Tea [03Oct11] - 0 views

  • A tea producer blended the tea with radioactive cesium with the tea without radioactive cesium so that he could sell off his radioactive tea. An operator of a sewer sludge plant knowingly sold radioactive sludge to a manufacturer of garden soil because there was no national government standard when he sold it. Their reason: "It's safer that way, as radioactive cesium will be diluted".Many Japanese consumers seem dismayed to find out that there are people among them who would do such a thing, but there are people like that, unfortunately. And as the article cites one government agency, it is clearly none of the government's business to do anything about it anytime soon.From Tokyo Shinbun paper version (not online; 10/3/2011), extremely quick translation subject to revision later if necessary:
  • Dilute cesium and sell - blend tea, garden soil - so that the cesium level is below the limitAfter the Fukushima I Nuclear Power Plant accident spread radioactive materials, the provisional safety limit was set for variety of foods and goods. If an item tests less than the provisional limit it is considered "guaranteed safe". As the result, there are businesses that mix [radioactive goods] with those made in places far away from Fukushima Prefecture to dilute radioactive materials and sell them. Currently it is not against the law to do so, but the consumers who doubt the safety of the products and the producers who fear further "baseless rumor" damages are voicing concern.Mixing
  • According to our research, we have been able to confirm instances of goods being sold after diluting the radioactive cesium content - garden soil and green teas.In case of garden soil, sludge from water purification plants and sewage treatment plants had been used as an ingredient of the garden soil before the provisional safety limit for sludge was set. Sludge contains vital ingredients like phosphorus and potassium, and it is mixed with the soil at 10 to 20% ratio to make the garden soil.The safety standard for radioactive materials in sludge was established on June 16, but some water purification plants in Kanagawa Prefecture had sold the total of 4,538 tonnes of sludge to the garden soil manufacturers from April up till June 16.
  • ...4 more annotations...
  • As for green tea, the tea producer was mixing the tea that passed the provisional safety limit but which still contained radioactive cesium with the tea made in Kyushu, far away from Fukushima I Nuke Plant. The blend was the radioactive tea 20%, the Kyushu tea 80%.Most water purification plants had voluntarily stopped shipping the radioactive sludge until the provisional safety limit was decided. However, the company who runs this particular water purification plant that continued to ship says, "The detection level was low. If the sludge was made into the garden soil it would be diluted further". The company blames the manufacturers who bought the radioactive sludge, saying "The ultimate responsibility rests with those who make [the sludge] into final products and sell them". The company is currently selling the radioactive sludge to the businesses that supply dirt for construction projects, as the national government has sent out an instruction that "the use of radioactive sludge in the garden soil had better be suspended".According to the green tea producer, there weren't enough of the tea leaves that passed the safety limit [but still contained radioactive cesium] to make it worthwhile to sell, so the company decided to mix it to make a "blend tea". The person in charge of the "blend tea" says "We made it clear in the package that it was a "blend tea", so there should be no problem. We just wanted to make the tea safer for the consumers".
  • SuspicionThese practices are not illegal, and when the contaminated products are mixed with non-contaminated products there should be less ill-effect on humans. However, if this "dilute and sell" model takes hold, it will only add to doubt and confusion for the consumers. Damage from "baseless rumors" may spread to milk and rice. It has been a standard practice to mix milk from different locations. The same goes for rice.The national consumer association federation chief proposes the detailed labeling of the place of manufacture on a prefectural level so that the consumers can choose safely.
  • However, there is no law requiring the place of manufacture for the garden soil, and there is no voluntary guideline by the industry either. The national standard for food labeling only requires the label "Made in Japan" in the case of "blended" produce like rice and tea and processed foods; there is no requirement to show the name of prefecture where the product is made. The Consumer Affairs Agency of Japan [which is supposed to regulate the industries with the welfare of consumers in mind] is not going to do anything at this point, saying "Places of manufacture for the blended goods may change, so it is not practical to require detailed labels".
  • On the other hand, the head of the Worldwide Agricultural Policy Information Center is critical. He says "The role of the national government is to stop the spread of radioactive materials. To allow goods with radioactive materials to be diluted and and sold widely would be considered as approval by the national government to spread the contamination [all over Japan]". JA agricultural co-op Fukushima is also distrustful of the government policy [or lack thereof], saying "There will be no "baseless rumors" if the produce that is found with radioactive materials is not sold".However, for now, we can only count on the voluntary effort by the industries. A new national policy would be necessary, just like when there was a problem of labeling "made in Japan" and "imported" goods.
D'coda Dcoda

Inspections failed to detect cesium-tainted 'Sayama' tea [13Oct11] - 0 views

  • Government tests that detected levels of radioactive cesium exceeding the legal limit in tea products made with famous “Sayama tea,” a high-end brand of green tea leaves produced mainly in the southwestern region of Saitama Prefecture, have left a bitter taste in producers’ mouths. The association of green tea producers in the prefecture announced on Sept. 14 that it will voluntarily stop shipments and sales of tea leaves produced this year. But the news about cesium contamination of Sayama tea is all the more shocking to these producers–not just because it threatens the reputation of one of the most highly prized brands of green tea in Japan–but also because earlier sampling inspections by the prefectural government found no problem with locally produced tea leaves.
  • The results of the surprise radiation tests on food products that the Ministry of Health, Labor and Welfare started in August stunned the green tea industry in Saitama Prefecture. On Sept. 2 and 5, the ministry announced the results of such tests on 59 food items, including vegetables and seafood. Among them, five tea products were found to contain levels of cesium above the legal limit of 500 becquerels per kilogram. Four of them were products of Saitama Prefecture, and they contained 800 to 1,530 becquerels. The prefecture accounts for only about 1 percent of Japan’s overall tea production, but Sayama tea is one of the most famous varieties of tea in Japan.
Dan R.D.

Is nuclear power fair for future generations? Realities of nuclear power production [05... - 0 views

  • ScienceDaily (May 5, 2011) — The recent nuclear accident in Fukushima Daiichi in Japan has brought the nuclear debate to the forefront of controversy. While Japan is trying to avert further disaster, many nations are reconsidering the future of nuclear power in their regions. A study by Behnam Taebi from the Delft University of Technology, published online in the Springer journal Philosophy & Technology, reflects on the various possible nuclear power production methods from an ethical perspective: If we intend to continue with nuclear power production, which technology is most morally desirable?
  • Dr. Taebi said, "Discussions on nuclear power usually end up in a yes/no dichotomy. Meanwhile the production of nuclear power is rapidly growing. Before we can reflect on the desirability of nuclear power, we should first distinguish between its production methods and their divergent ethical issues. We must then clearly state, if we want to continue on the nuclear path, which technology we deem desirable from a moral perspective. Then we can compare nuclear with other energy systems. The state of the art in nuclear technology provides us with many more complicated moral dilemmas than people sometimes think."
D'coda Dcoda

Saudi Arabia's nuclear energy ambitions [18Aug11] - 0 views

  • The Kingdom of Saudi Arabia (KSA) plans to build 16 nuclear reactors over the next 20 years spending an estimated $7 billion on each plant. The $112 billion investment, which includes capacity to become a regional exporter of electricity, will provide one-fifth of the Kingdom’s electricity for industrial and residential use and, critically, for desalinization of sea water.
  • dom’s electricity for industrial and residential use and, critically, for desalinization of sea water.
  • This past April, the Saudi government announced the development of a nuclear city to train and house the technical workforce that will be needed to achieve these ambitions. It is clear that KSA’s plans for spending its sovereign wealth fund will be mostly focused on the home front. At the same time, a former Saudi ambassador to the United States , Prince Turki al-Faisal (served 2005-2006), has warned that a regional nuclear arms race could start if Iran does not curb its nuclear efforts. He told the Wall Street Journal on July 20, “It is in our interest that Iran does not develop a nuclear weapon, for their doing so would compel Saudi Arabia … to pursue policies that could lead to untold and possibly dramatic consequences.”
  • ...8 more annotations...
  • According to the WSJ, the Saudi government said the former ambassador does not speak for it in an official capacity. Al-Faisal, however, is widely believed to be on a short list to be the next foreign minister of KSA. How credible his claim is about the potential for a regional arms race remains to be seen. Swapping nukes for oil drums
  • The main driver for KSA’s plans to build reactors is that at the rate that it is burning its own oil, it may have substantially less to export in just a decade or so. At a minimum, it may lose the excess capacity the rest of the world relies on when there are disruptions in supplies from other countries. One scenario suggested by energy analysts that follow oil markets is that within two decades most of the KSA output would be used for domestic consumption. Total Saudi reserves are estimated at 267 billion barrels. Debates rage in the news media over so-called peak oil, but energy experts discount them as speculative at best, and fantastic or worse on the downside.
  • Current production estimates put total KSA production capacity at 12.5 million barrels a day with a maximum output of 15 million barrels a day. The Wall Street Journal reported in April 2011 that production was running at 8 million-9 million barrels a day compared to 11 million barrels a day in 2010 reported by the Energy Information Administration. The difference is the global economic downturn has reduced demand. What’s got the attention of energy planners is that domestic use in KSA could grow from 3.4 million barrels of oil a day in 2009 to 8.3 million barrels a day by 2028.
  • The official Saudi press agency said in April 2010 that it was “alarmed” by increasing oil and gas consumption for domestic use and the resulting impact on export revenues. Reduction of consumption, which pushes up use of fossil fuel to produce electricity, is not an option for both economic and political reasons. In 2011, the Saudi government has increased its subsidies of energy supplies by $100 million for domestic use, in part to dampen any possibilities of social unrest like that which toppled regimes in Tunisia and Egypt.
  • Like other Arab countries, KSA has a large population of unemployed young people who have better than average educations.  This is a volatile mix and the arch conservatives that run KSA have defused it with lavish subsidies.
  • Electricity demand is predicted to increase from 75 GWe by 2018 to more than 120 Gwe by 2030. This growth can’t be sustained by fossil fuel alone and also maintain the income stream the nation depends on from oil exports. Nuclear reactors are an obvious choice to intervene in an unsustainable growth scenario.
  • This outlook is sending the Saudi government down a path to develop nuclear energy. In April, it announced that it was setting up the King Abdullah City for Atomic and Renewable Energy (KA-CARE) to pursue this objective. Saudi Arabia is building up its transmission and distribution grids to interconnect with the UAE on the east and Oman to the south.  It is developing its so-called empty quarter which Middle East experts point out isn’t as empty as it sounds.
  • The new city’s charter states that nuclear and renewable energies, especially solar, would be developed to ensure continued supplies of drinking water and electricity to its growing population and save hydrocarbon resources such as petroleum and gas for use by future generations. The objective is to make them a source of income for a much longer period.
D'coda Dcoda

Sun and wind as alternative to nuclear energy : Voice of Russia [04Jul11] - 0 views

  • Scared by the nuclear disaster at the Japanese Fukushima-1 Nuclear power plant, Germany, Italy and Switzerland have decided to abandon nuclear energy towards alternative sources of energy. How safe are these alternatives?  Today ecologists and scientists are trying to answer this question.Nature protection activists call alternative sources of energy “green” sources. However after a more detailed study these sources can hardly be regarded as “environmentally friendly”. Silicon solar arrays Europeans want to see on the roofs of their houses turn to be unsafe right at the stage of their production. The production of one ton of photo elements leads to the emission up to 4 tons of silicon tetrachloride, a highly toxic substance, which combinations may cause different diseases. Besides poisonous gallium, lead and arsenic the photo elements also contain cadmium. If cadmium enters a human body it can cause tumors and affect the nervous system.
  • As for wind turbines, their noise is dangerous for health and it is impossible to recycle the worn blades. Though green energy sources are not completely safe it is the question of choosing the lesser of two evils, Igor Shkradyuk, the coordinator of the program on the greening of industrial activities at the Center of Wild Life Protection, says."Absolutely environmentally clean energy does not exist.  All its types have stronger of weaker impact on the environment. A solar battery requires a huge amount of unhealthy silicon. Engineers hope that silicon-free materials for solar batteries will be produced in 10-20 years. The solar battery, if you don’t break it, of course, poses no danger. As for wind turbines, the first one was put into operation in mid 1970-s in Germany. But the residents complained about its strong vibration and noise and a local court ruled to stop it. Since then many things have changed and modern powerful wind turbines are unheard already at a distance of 200 meters. But they are the main source of danger for migrating birds which are almost asleep as they fly to their wintering grounds and back."
  • Vladimir Chuprov, the head of the energy department of Russia’s Greenpeace agrees that all sources of energy cause environmental damage.  But the alternative sources have advantages anyway, he says."Of course, we are negative towards any pollution and here the problem of choice comes up. For example, silicon production requires chlorine which is hazardous. But now the gradual transition to chorine-free methods of silicon production has already begun.  Besides that we see the gradual transition to thin-film photoconverters in particular arsenic based converters. And after all, nobody says that solar batteries will be thrown to a dump site. It is necessary to ensure their proper utilization." 
  • ...1 more annotation...
  • The nuclear energy industry also faces serious upgrading. Russia has the project of constructing a nuclear power plant certified by the EU. This project takes into account all the tragic lessons of Fukushima. In particular such a plant will be capable to withstand the crash of an aircraft.Another problem of choice is the price. The energy from solar batteries and wind turbines is 2-5 times more expensive than that from nuclear energy. And while Germany is rejecting the use nuclear energy, France is proposing it to export its electricity produced by the French nuclear plants and China is ready to employ German experts in nuclear energy.  
D'coda Dcoda

France Commits to Nuclear Future [07Jul11] - 0 views

  • As a long time proponent of nuclear power, last week France announced that it will invest $1.4 billion in its nuclear energy program, diverging from contentious deliberation from neighboring states on nuclear energy policy after the earthquake and tsunami in Japan that damaged the Fukushima Daiichi plant in March. The President of France, Nicholas Sarkozy, issued a strong commitment announcing the energy funding package by declaring there is “no alternative to nuclear energy today.” With the capital used to fund fourth generation nuclear power plant technology, focusing research development in nuclear safety, the announcement validates many decades of energy infrastructure and legacy expansion. France currently operates the second largest nuclear fleet in the world with 58 reactors, responsible for supplying more than 74 percent of domestic electricity demand supplied to the world’s fifth largest economy last year. At the end of last month, French uranium producer, Areva Group (EPA:AREVA), and Katko announced plans to increase production to 4,000 tonnes of uranium next year.  Katco is a joint venture for Areva, the world’s largest builder of nuclear power plants, and Kazatomprom the national operator for uranium prospecting, exploration and production for Kazakhstan.
  • German closure The pronouncement to maintain the nuclear prominence in France provides a strong counterweight to other countries in the region. Germany recently announced the phased shutdown of its 17 nuclear power stations by 2022.  Last week, Germany’s federal parliament voted overwhelmingly to close its remaining nine active plants according to a preset 11 year schedule. A Federal Network Agency, which oversees German energy markets, will decide by the end of September whether one of the eight nuclear plants already closed in recent months should be kept ready on a “cold reserve” basis, to facilitate the transition for national energy supply. The German commitment to an energy policy transition indicates that the national power mix towards renewable sources will have to double from its present range of 17 percent to an ambitious 35 percent. Subsidies for hydro electric and geothermal energy will increase; however, financial support for biomass, solar, and wind energy will be reduced. German Chancellor Angela Merkel has said she would prefer for utility suppliers not to make up any electrical shortfalls after 2022 by obtaining nuclear power from neighboring countries like France. Germany will require an expansive supergrid to effectively distribute electricity from the north to growing industrial urban centers like Munich, in the south. In order to execute this plan the new laws call for the addition of some 3,600 kilometers of high capacity power lines. Germany’s strategy will partially include the expansion of wind turbines on the North Sea, enabling some 25,000 megawatts’ worth of new offshore wind power which will have to be developed by 2030. Nuclear persistence in the United Kingdom Last month, the government in the United Kingdom maintained its strong commitment to nuclear energy, confirming a series of potential locations for new nuclear builds.  The national policy statements on energy said renewables, nuclear and fossil fuels with carbon capture and storage “all have a part to play in delivering the United Kingdom’s decarbonisation objectives,” and confirmed eight sites around the country as suitable for building new nuclear stations by 2025. The statements, which are to be debated in Parliament, include a commitment for an additional 33,000 megawatts of renewable energy capacity, while the government said more than $160 billion will be required to replace around 25 percent of the country’s generating capacity, due to close by 2020. The Scottish government has also softened its tough opposition to nuclear power, following recognition by the energy minister of a “rational case” to extend operations at Scotland’s two nuclear plants. Additional Eurozone participation In June, Italian voters rejected a government proposal to reintroduce nuclear power. The plan by Prime Minister Silvio Berlusconi to restart Italy’s nuclear energy program abandoned during the 1980s, was rejected by 94 percent of voters in the referendum. Another regional stakeholder, the Swiss government has decided not to replace the four nuclear power plants that supply about 40 percent of the country’s electricity. The last of Switzerland’s power nuclear plants is expected to end production by 2034, leaving time for the country to develop alternative power sources. Although the country is home to the oldest nuclear reactor presently in operation, the Swiss Energy Foundation has stated an objective to work for “an ecological, equitable and sustainable energy policy”. Its “2000 watt society” promotes energy solutions which employ renewable energy resources other than fossil fuels or nuclear power.
D'coda Dcoda

Spent Nuclear Fuel Reprocessing Facilities, Reulations [10Jun11] - 0 views

  • The NRC has the authority under the Atomic Energy Act to license commercial spent fuel reprocessing facilities. Currently, Title 10 of the Code of Federal Regulations (10 CFR) Part 50, ``Domestic Licensing of Production and Utilization Facilities,'' provides the licensing framework for production and utilization facilities. Although a reprocessing facility is one type of production facility, its industrial processes are more akin to fuel cycle processes. This framework was established in the 1970's to license the first U.S. reprocessing facilities. The policy decision by the Carter Administration to cease reprocessing initiatives was based, in part, on the proliferation risks posed by the early reprocessing technology. While that policy was reversed during the Reagan Administration, until recently there was no commercial interest in reprocessing and, hence, no need to update the existing reprocessing regulatory framework in 10 CFR part 50.
  • Although commercial reprocessing interest waned, the Department of Energy (DOE) continued to pursue reprocessing technology development through the National Laboratories. The DOE has sought to decrease proliferation risk and spent fuel high-level waste through developing more sophisticated reprocessing technologies. During the Bush Administration, the Global Nuclear Energy Partnership (GNEP) renewed interest in commercial reprocessing. The GNEP sought to expand the use of civilian nuclear power globally and close the nuclear fuel cycle through reprocessing spent fuel and deploying fast reactors to burn long-lived actinides. In response to these initiatives, the Commission directed the staff to complete an analysis of 10 CFR part 50 to identify regulatory gaps for licensing an advanced reprocessing facility.
  • In mid-2008, two nuclear industry companies informed the NRC of their intent to seek a license for a reprocessing facility in the U.S. An additional company expressed its support for updating the regulatory framework for reprocessing, but stopped short of stating its intent to seek a license for such a facility. At the time, the NRC staff also noted that progress on some GNEP initiatives had waned and it appeared appropriate to shift the focus of the NRC staff's efforts from specific GNEP-facility regulations to a more broadly applicable framework for commercial reprocessing facilities.
  • ...1 more annotation...
  • In SECY-08-0134, the staff discussed the shift in its approach to developing the regulatory framework for commercial reprocessing facilities. The staff noted that it would defer additional work on regulatory framework development efforts for advanced recycling reactors and focus on the framework revisions necessary to license a commercial reprocessing facility. As a result of this shift, an additional review of the initial gap analysis was warranted. The NRC staff further refined the regulatory gap analysis by focusing on commercial reprocessing and recycling using existing reactor technology. The staff summarized this analysis in SECY-09-0082. The staff's gap analysis identified 14 ``high'' priority gaps that must be resolved to establish an effective and efficient regulatory framework. The NRC staff's regulatory gap analysis considered several documents in its analysis, including: NUREG-1909, a white paper authored by the Advisory Committee on Nuclear Waste and Materials, titled ``Background, Status and Issues Related to the Regulation of Advanced Spent Nuclear Fuel Recycle Facilities,'' issued June 2008; correspondence from the Union of Concerned Scientists titled, ``Revising the Rules for Materials Protection, Control and Accounting;'' and a Nuclear Energy Institute white [[Page 34009]] paper titled, ``Regulatory Framework for an NRC Licensed Recycling Facility.''
D'coda Dcoda

The nuclear power plans that have survived Fukushima [28Sep11] - 0 views

  • SciDev.Net reporters from around the world tell us which countries are set on developing nuclear energy despite the Fukushima accident. The quest for energy independence, rising power needs and a desire for political weight all mean that few developing countries with nuclear ambitions have abandoned them in the light of the Fukushima accident. Jordan's planned nuclear plant is part of a strategy to deal with acute water and energy shortages.
  • The Jordan Atomic Energy Commission (JAEC) wants Jordan to get 60 per cent of its energy from nuclear by 2035. Currently, obtaining energy from neighbouring Arab countries costs Jordan about a fifth of its gross domestic product. The country is also one of the world's most water-poor nations. Jordan plans to desalinate sea water from the Gulf of Aqaba to the south, then pump it to population centres in Amman, Irbid, and Zarqa, using its nuclear-derived energy. After the Fukushima disaster, Jordan started re-evaluating safety procedures for its nuclear reactor, scheduled to begin construction in 2013. The country also considered more safety procedures for construction and in ongoing geological and environmental investigations.
  • The government would not reverse its decision to build nuclear reactors in Jordan because of the Fukushima disaster," says Abdel-Halim Wreikat, vice Chairman of the JAEC. "Our plant type is a third-generation pressurised water reactor, and it is safer than the Fukushima boiling water reactor." Wreikat argues that "the nuclear option for Jordan at the moment is better than renewable energy options such as solar and wind, as they are still of high cost." But some Jordanian researchers disagree. "The cost of electricity generated from solar plants comes down each year by about five per cent, while the cost of producing electricity from nuclear power is rising year after year," says Ahmed Al-Salaymeh, director of the Energy Centre at the University of Jordan. He called for more economic feasibility studies of the nuclear option.
  • ...20 more annotations...
  • And Ahmad Al-Malabeh, a professor in the Earth and Environmental Sciences department of Hashemite University, adds: "Jordan is rich not only in solar and wind resources, but also in oil shale rock, from which we can extract oil that can cover Jordan's energy needs in the coming years, starting between 2016 and 2017 ... this could give us more time to have more economically feasible renewable energy."
  • Finance, rather than Fukushima, may delay South Africa's nuclear plans, which were approved just five days after the Japanese disaster. South Africa remains resolute in its plans to build six new nuclear reactors by 2030. Katse Maphoto, the director of Nuclear Safety, Liabilities and Emergency Management at the Department of Energy, says that the government conducted a safety review of its two nuclear reactors in Cape Town, following the Fukushima event.
  • Vietnam's nuclear energy targets remain ambitious despite scientists' warning of a tsunami risk. Vietnam's plan to power 10 per cent of its electricity grid with nuclear energy within 20 years is the most ambitious nuclear energy plan in South-East Asia. The country's first nuclear plant, Ninh Thuan, is to be built with support from a state-owned Russian energy company and completed by 2020. Le Huy Minh, director of the Earthquake and Tsunami Warning Centre at Vietnam's Institute of Geophysics, has warned that Vietnam's coast would be affected by tsunamis in the adjacent South China Sea.
  • Larkin says nuclear energy is the only alternative to coal for generating adequate electricity. "What other alternative do we have? Renewables are barely going to do anything," he said. He argues that nuclear is capable of supplying 85 per cent of the base load, or constantly needed, power supply, while solar energy can only produce between 17 and 25 per cent. But, despite government confidence, Larkin says that a shortage of money may delay the country's nuclear plans.
  • The government has said yes but hasn't said how it will pay for it. This is going to end up delaying by 15 years any plans to build a nuclear station."
  • The Ninh Thuan nuclear plant would sit 80 to 100 kilometres from a fault line on the Vietnamese coast, potentially exposing it to tsunamis, according to state media. But Vuong Huu Tan, president of the state-owned Vietnam Atomic Energy Commission, told state media in March, however, that lessons from the Fukushima accident will help Vietnam develop safe technologies. And John Morris, an Australia-based energy consultant who has worked as a geologist in Vietnam, says the seismic risk for nuclear power plants in the country would not be "a major issue" as long as the plants were built properly. Japan's nuclear plants are "a lot more earthquake prone" than Vietnam's would be, he adds.
  • Undeterred by Fukushima, Nigeria is forging ahead with nuclear collaborations. There is no need to panic because of the Fukushima accident, says Shamsideen Elegba, chair of the Forum of Nuclear Regulatory Bodies in Africa. Nigeria has the necessary regulatory system to keep nuclear activities safe. "The Nigerian Nuclear Regulatory Authority [NNRA] has established itself as a credible organisation for regulatory oversight on all uses of ionising radiation, nuclear materials and radioactive sources," says Elegba who was, until recently, the NNRA's director general.
  • Vietnam is unlikely to experience much in the way of anti-nuclear protests, unlike neighbouring Indonesia and the Philippines, where civil society groups have had more influence, says Kevin Punzalan, an energy expert at De La Salle University in the Philippines. Warnings from the Vietnamese scientific community may force the country's ruling communist party to choose alternative locations for nuclear reactors, or to modify reactor designs, but probably will not cause extreme shifts in the one-party state's nuclear energy strategy, Punzalan tells SciDev.Net.
  • Will the Philippines' plans to rehabilitate a never-used nuclear power plant survive the Fukushima accident? The Philippines is under a 25-year moratorium on the use of nuclear energy which expires in 2022. The government says it remains open to harnessing nuclear energy as a long-term solution to growing electricity demand, and its Department of Science and Technology has been making public pronouncements in favour of pursuing nuclear energy since the Fukushima accident. Privately, however, DOST officials acknowledge that the accident has put back their job of winning the public over to nuclear by four or five years.
  • In the meantime, the government is trying to build capacity. The country lacks, for example, the technical expertise. Carmencita Bariso, assistant director of the Department of Energy's planning bureau, says that, despite the Fukushima accident, her organisation has continued with a study on the viability, safety and social acceptability of nuclear energy. Bariso says the study would include a proposal for "a way forward" for the Bataan Nuclear Power Plant, the first nuclear reactor in South East Asia at the time of its completion in 1985. The $2.3-billion Westinghouse light water reactor, about 60 miles north of the capital, Manila, was never used, though it has the potential to generate 621 megawatts of power. President Benigno Aquino III, whose mother, President Corazon Aquino, halted work on the facility in 1986 because of corruption and safety issues, has said it will never be used as a nuclear reactor but could be privatised and redeveloped as a conventional power plant.
  • But Mark Cojuangco, former lawmaker, authored a bill in 2008 seeking to start commercial nuclear operations at the Bataan reactor. His bill was not passed before Congress adjourned last year and he acknowledges that the Fukushima accident has made his struggle more difficult. "To go nuclear is still the right thing to do," he says. "But this requires a societal decision. We are going to spark public debates with a vengeance as soon as the reports from Fukushima are out." Amended bills seeking both to restart the reactor, and to close the issue by allowing either conversion or permanent closure, are pending in both the House and the Senate. Greenpeace, which campaigns against nuclear power, believes the Fukushima accident has dimmed the chances of commissioning the Bataan plant because of "increased awareness of what radioactivity can do to a place". Many parts of the country are prone to earthquakes and other natural disasters, which critics say makes it unsuitable both for the siting of nuclear power stations and the disposal of radioactive waste.
  • In Kenya, nuclear proponents argue for a geothermal – nuclear mix In the same month as the Fukushima accident, inspectors from the International Atomic Energy Agency approved Kenya's application for its first nuclear power station (31 March), a 35,000 megawatt facility to be built at a cost of Sh950 billion (US$9.8 billion) on a 200-acre plot on the Athi Plains, about 50km from Nairobi
  • The plant, with construction driven by Kenya's Nuclear Electricity Project Committee, should be commissioned in 2022. The government claims it could satisfy all of Kenya's energy needs until 2040. The demand for electricity is overwhelming in Kenya. Less than half of residents in the capital, Nairobi, have grid electricity, while the rural rate is two per cent. James Rege, Chairman of the Parliamentary Committee on Energy, Communication and Information, takes a broader view than the official government line, saying that geothermal energy, from the Rift Valley project is the most promising option. It has a high production cost but remains the country's "best hope". Nuclear should be included as "backup". "We are viewing nuclear energy as an alternative source of power. The cost of fossil fuel keeps escalating and ordinary Kenyans can't afford it," Rege tells SciDev.Net.
  • Hydropower is limited by rivers running dry, he says. And switching the country's arable land to biofuel production would threaten food supplies. David Otwoma, secretary to the Energy Ministry's Nuclear Electricity Development Project, agrees that Kenya will not be able to industrialise without diversifying its energy mix to include more geothermal, nuclear and coal. Otwoma believes the expense of generating nuclear energy could one day be met through shared regional projects but, until then, Kenya has to move forward on its own. According to Rege, much as the nuclear energy alternative is promising, it is extremely important to take into consideration the Fukushima accident. "Data is available and it must be one step at a time without rushing things," he says. Otwoma says the new nuclear Kenya can develop a good nuclear safety culture from the outset, "but to do this we need to be willing to learn all the lessons and embrace them, not forget them and assume that won't happen to us".
  • But the government adopted its Integrated Resource Plan (IRP) for 2010-2030 five days after the Fukushima accident. Elliot Mulane, communications manager for the South African Nuclear Energy Corporation, (NECSA) a public company established under the 1999 Nuclear Energy Act that promotes nuclear research, said the timing of the decision indicated "the confidence that the government has in nuclear technologies". And Dipuo Peters, energy minister, reiterated the commitment in her budget announcement earlier this year (26 May), saying: "We are still convinced that nuclear power is a necessary part of our strategy that seeks to reduce our greenhouse gas emissions through a diversified portfolio, comprising some fossil-based, renewable and energy efficiency technologies". James Larkin, director of the Radiation and Health Physics Unit at the University of the Witwatersrand, believes South Africa is likely to go for the relatively cheap, South Korean generation three reactor.
  • It is not only that we say so: an international audit came here in 2006 to assess our procedure and processes and confirmed the same. Elegba is firmly of the view that blame for the Fukushima accident should be allocated to nature rather than human error. "Japan is one of the leaders not only in that industry, but in terms of regulatory oversight. They have a very rigorous system of licensing. We have to make a distinction between a natural event, or series of natural events and engineering infrastructure, regulatory infrastructure, and safety oversight." Erepamo Osaisai, Director General of the Nigeria Atomic Energy Commission (NAEC), has said there is "no going back" on Nigeria's nuclear energy project after Fukushima.
  • Nigeria is likely to recruit the Russian State Corporation for Atomic Energy, ROSATOM, to build its first proposed nuclear plant. A delegation visited Nigeria (26- 28 July) and a bilateral document is to be finalised before December. Nikolay Spassy, director general of the corporation, said during the visit: "The peaceful use of nuclear power is the bedrock of development, and achieving [Nigeria's] goal of being one of the twenty most developed countries by the year 2020 would depend heavily on developing nuclear power plants." ROSATOM points out that the International Atomic Energy Agency monitors and regulates power plant construction in previously non-nuclear countries. But Nnimmo Bassey, executive director of the Environmental Rights Action/Friends of the Earth Nigeria (ERA/FoEN), said "We cannot see the logic behind the government's support for a technology that former promoters in Europe, and other technologically advanced nations, are now applying brakes to. "What Nigeria needs now is investment in safe alternatives that will not harm the environment and the people. We cannot accept the nuclear option."
  • Thirsty for electricity, and desirous of political clout, Egypt is determined that neither Fukushima ― nor revolution ― will derail its nuclear plans. Egypt was the first country in the Middle East and North Africa to own a nuclear programme, launching a research reactor in 1961. In 2007 Egypt 'unfroze' a nuclear programme that had stalled in the aftermath of the Chernobyl disaster. After the Egyptian uprising in early 2011, and the Fukushima accident, the government postponed an international tender for the construction of its first plant.
  • Yassin Ibrahim, chairman of the Nuclear Power Plants Authority, told SciDev.Net: "We put additional procedures in place to avoid any states of emergency but, because of the uprising, the tender will be postponed until we have political stability after the presidential and parliamentary election at the end of 2011". Ibrahim denies the nuclear programme could be cancelled, saying: "The design specifications for the Egyptian nuclear plant take into account resistance to earthquakes and tsunamis, including those greater in magnitude than any that have happened in the region for the last four thousand years. "The reactor type is of the third generation of pressurised water reactors, which have not resulted in any adverse effects to the environment since they began operation in the early sixties."
  • Ibrahim El-Osery, a consultant in nuclear affairs and energy at the country's Nuclear Power Plants Authority, points out that Egypt's limited resources of oil and natural gas will run out in 20 years. "Then we will have to import electricity, and we can't rely on renewable energy as it is still not economic yet — Egypt in 2010 produced only two per cent of its needs through it." But there are other motives for going nuclear, says Nadia Sharara, professor of mineralogy at Assiut University. "Owning nuclear plants is a political decision in the first place, especially in our region. And any state that has acquired nuclear technology has political weight in the international community," she says. "Egypt has the potential to own this power as Egypt's Nuclear Materials Authority estimates there are 15,000 tons of untapped uranium in Egypt." And she points out it is about staying ahead with technology too. "If Egypt freezes its programme now because of the Fukushima nuclear disaster it will fall behind in many science research fields for at least the next 50 years," she warned.
D'coda Dcoda

It's 2050: Do you know where your nuclear waste is? [09Sep11] - 1 views

  • Though nuclear power produces electricity with little in the way of carbon dioxide emissions, it, like other energy sources, is not without its own set of waste products. And in the case of nuclear power, most of these wastes are radioactive.1 Some very low level nuclear wastes can be stored and then disposed of in landfill-type settings. Other nuclear waste must remain sequestered for a few hundred years in specially engineered subsurface facilities; this is the case with low level waste, which is composed of low concentrations of long-lived radionuclides and higher concentrations of short-lived ones. Intermediate and high-level waste both require disposal hundreds of meters under the Earth’s surface, where they must remain out of harm’s way for thousands to hundreds of thousands of years (IAEA, 2009). Intermediate level wastes are not heat-emitting, but contain high concentrations of long-lived radionuclides. High-level wastes, including spent nuclear fuel and wastes from the reprocessing of spent fuel, are both heat-emitting and highly radioactive.
  • When it comes to the severity of an accident at a nuclear facility, there may be little difference between those that occur at the front end of the nuclear power production and those at the back end: An accident involving spent nuclear fuel can pose a threat as disastrous as that posed by reactor core meltdowns. In particular, if spent fuel pools are damaged or are not actively cooled, a major crisis could be in sight, especially if the pools are packed with recently discharged spent fuel.
  • Elements of success
  • ...17 more annotations...
  • All countries with well-established nuclear programs have found themselves requiring spent fuel storage in addition to spent fuel pools at reactors. Some, like the US, use dry storage designs, such as individual casks or storage vaults that are located at reactor sites; other countries, Germany for one, use away-from-reactor facilities. Sweden has a large underground pool located at a centralized facility, CLAB, to which different reactors send their spent fuel a year after discharge, so spent fuel does not build up at reactor sites. Dry storage tends to be cheaper and can be more secure than wet storage because active circulation of water is not required. At the same time, because dry storage uses passive air cooling, not the active cooling that is available in a pool to keep the fuel cool, these systems can only accept spent fuel a number of years after discharge.6
  • The United States had been working toward developing a high-level waste repository at Yucca Mountain, Nevada; this fell through in 2010, when the Obama administration decided to reverse this decision, citing political “stalemate” and lack of public consensus about the site. Instead, the Obama administration instituted the Blue Ribbon Commission on America’s Nuclear Future to rethink the management of the back end of the nuclear fuel cycle.8 The US can flaunt one success, though. The Waste Isolation Pilot Project (WIPP), located near Carlsbad in southern New Mexico, is actually the only operating deep geologic repository for intermediate level nuclear waste, receiving waste since 1998. In the case of WIPP, it only accepts transuranic wastes from the nuclear weapons complex. The site is regulated solely by the Environmental Protection Agency, and the state of New Mexico has partial oversight of WIPP through its permitting authority established by the Resource Conservation and Recovery Act. The city of Carlsbad is supportive of the site and it appears to be tolerated by the rest of the state.9
  • France has had more success after failing in its first siting attempt in 1990, when a granite site that had been selected drew large protests and the government opted to rethink its approach to nuclear waste disposal entirely. In 2006, the government announced that it needed a geologic repository for high-level waste, identified at least one suitable area, and passed laws requiring a license application to be submitted by 2015 and the site to begin receiving high-level waste by 2025.
  • Canada recently rethought the siting process for nuclear waste disposal and began a consensus-based participatory process. The Canadian Nuclear Waste Management Organization was established in 2002, after previous attempts to site a repository failed. The siting process began with three years’ worth of conversations with the public on the best method to manage spent fuel. The organization is now beginning to solicit volunteer communities to consider a repository, though much of the process remains to be decided, including the amount and type of compensation given to the participating communities.
  • the most difficult part of the back end of the fuel cycle is siting the required facilities, especially those associated with spent fuel management and disposal. Siting is not solely a technical problem—it is as much a political and societal issue. And to be successful, it is important to get the technical and the societal and political aspects right.
  • After weathering the Fukushima accident, and given the current constraints on carbon dioxide emissions and potential for growth of nuclear power, redefinition of a successful nuclear power program is now required: It is no longer simply the safe production of electricity but also the safe, secure, and sustainable lifecycle of nuclear power, from the mining of uranium ores to the disposal of spent nuclear fuel. If this cannot be achieved and is not thought out from the beginning, then the public in many countries will reject nuclear as an energy choice.
  • Certain elements—including an institution to site, manage, and operate waste facilities—need to be in place to have a successful waste management program. In some countries, this agency is entirely a government entity, such as the Korea Radioactive Waste Management Organization. In other countries, the agency is a corporation established by the nuclear industry, such as SKB in Sweden or Posiva Oy in Finland. Another option would be a public– private agency, such as Spain’s National Company for Radioactive Waste or Switzerland’s National Cooperative for the Disposal of Radioactive Waste.
  • Funding is one of the most central needs for such an institution to carry out research and development programs; the money would cover siting costs, including compensation packages and resources for local communities to conduct their own analyses of spent fuel and waste transportation, storage, repository construction, operations, security and safeguards, and future liabilities. Funds can be collected in a number of ways, such as putting a levy on electricity charges (as is done in the US) or charging based on the activity or volume of waste (Hearsey et al., 1999). Funds must also be managed—either by a waste management organization or another industry or government agency—in a way that ensures steady and ready access to funds over time. This continued reliable access is necessary for planning into the future for repository operations.
  • the siting process must be established. This should include decisions on whether to allow a community to veto a site and how long that veto remains operational; the number of sites to be examined in depth prior to site selection and the number of sites that might be required; technical criteria to begin selecting potential sites; non-technical considerations, such as proximity to water resources, population centers, environmentally protected areas, and access to public transportation; the form and amount of compensation to be offered; how the public is invited to participate in the site selection process; and how government at the federal level will be involved.
  • The above are all considerations in the siting process, but the larger process—how to begin to select sites, whether to seek only volunteers, and so on—must also be determined ahead of time. A short list of technical criteria must be integrated into a process that establishes public consent to go forward, followed by many detailed studies of the site—first on the surface, then at depth. There are distinct advantages to characterizing more than one site in detail, as both Sweden and Finland have done. Multiple sites allow the “best” one to be selected, increasing public approval and comfort with the process.
  • he site needs to be evaluated against a set of standards established by a government agency in the country. This agency typically is the environmental agency or the nuclear regulatory agency. The type of standards will constrain the method by which a site will be evaluated with regard to its future performance. A number of countries use a combination of methods to evaluate their sites, some acknowledging that the ability to predict processes and events that will occur in a repository decrease rapidly with each year far into the future, so that beyond a few thousand years, little can be said with any accuracy. These countries use what is termed a “safety case,” which includes multiple lines of evidence to assure safe repository performance into the future.
  • Moving forward
  • France, Canada, and Germany also have experienced a number of iterations of repository siting, some with more success than others. In the 1970s, Germany selected the Gorleben site for its repository; however, in the late 1990s, with the election of a Red–Green coalition government (the Greens had long opposed Gorleben), a rethinking of repository siting was decreed, and the government established the AkEnd group to re-evaluate the siting process. Their report outlined a detailed siting process starting from scratch, but to date too much political disagreement exists to proceed further.
  • Notes
  • Nuclear wastes are classified in various ways, depending on the country or organization doing the classification. The International Atomic Energy Agency (IAEA) notes six general categories of waste produced by civil nuclear power reactors: exempt waste, very short-lived waste, and very low level waste can be stored and then disposed of in landfill-type settings; low level waste, intermediate level waste, and high-level waste require more complex facilities for disposal.
  • Sweden is currently the country closest to realizing a final solution for spent fuel, after having submitted a license application for construction of a geologic repository in March 2011. It plans to open a high-level waste repository sometime after 2025, as do Finland and France.
  • Some countries, such as Sweden, Finland, Canada, and, until recently, the US, plan to dispose of their spent fuel directly in a geologic repository. A few others, such as France, Japan, Russia, and the UK have an interim step. They reprocess their spent fuel, extract the small amount of plutonium produced during irradiation, and use it in new mixed oxide (MOX) fuel. Then they plan to dispose of the high-level wastes from reprocessing in a repository.
D'coda Dcoda

Effect of contaminated soil on food chain sparks fears [10Sep11] - 0 views

  • Six months after the nuclear meltdowns in Fukushima Prefecture, the public's awareness of the threat posed by radiation is entering a new phase: the realization that the biggest danger now and in the future is from contaminated soil.
  • The iodine-131 ejected into the sky by the Fukushima No. 1 power station disaster was quickly detected in vegetables and tap water — even as far away as Tokyo, 220 km south of the plant. But contamination levels are now so low they are virtually undetectable, thanks to the short half-life of iodine-131 — eight days — and stepped up filtering by water companies.
  • But cesium is proving to be a tougher foe. The element's various isotopes have half-lives ranging from two to 30 years, generating concern about the food chain in Fukushima Prefecture, a predominantly agricultural region, as the elements wash fallout into the ground. The root of the problem is, well — roots. Cesium-134 and cesium-137 are viewed as potential health threats because vegetables can absorb the isotopes from the soil they're planted in.
  • ...9 more annotations...
  • "Until early spring, produce was contaminated (on the surface with radioactive materials) that the No. 1 plant discharged into the atmosphere. But now, the major route of contamination is through plant roots," said Kunikazu Noguchi, a radiation protection expert at Nihon University. Whether absorption by plant roots can affect human health remains to be seen. Experts are warning that the region's soil and agricultural products will require close monitoring for many years.
  • At the moment, sampling data collected by the various prefectural governments indicate that no vegetables, except for those grown in Fukushima Prefecture, have been found to contain more than the government's provisional limit of 500 becquerels per kilogram since June. Likewise, as of Sept. 7, samples of pork, chicken, milk and fruit had also tested within the provisional radiation limit, apart from Fukushima products and tea from Chiba, Kanagawa, Gunma, Tochigi, Saitama and Ibaraki prefectures.
  • In fact, the amount of radioactive materials in most of the food sampled has been steadily declining over the past few months, except for produce from Fukushima. "The results of Fukushima's sampling tests show the amountof radioactive material contained in vegetables has dropped sharply in recent months, including those grown in areas with high radiation levels," Noguchi said. "People shouldn't worry about it much (for the time being)," he said. "But mushrooms and other vegetables grown in contaminated forests are likely tocontain high levels of radioactive materials."
  • his year, it's very important to conduct thorough surveys. The contamination will continue for a long time, so data collection is essential," Muramatsu said. "We need to be prepared for the following years by recording data this year and studying the rate at which cesium in the soil is absorbed by each kind of produce," Muramatsu said. In the meantime, the radioactivity itself will continue to weaken over the years. Cesium-134 has a half-life of 2 years and cesium-137 a half-life of 30 years, meaning the radiation they emit will drop by half in 2 years and 30 years.
  • "Data from the Chernobyl disaster show that radioactive cesium in soil tends to become fixed more strongly to clay minerals as time passes. So agricultural contamination will lessen next year," he said. Muramatsu urged that special caution should be taken over products grown in soil rich in organic matter, such as in forested areas. "If the soil is rich in organic matter, it makes (cesium) more easily transferable to plants. . . . Forest soil is rich in organic matter, so people should be careful," he said.
  • Now that soil in a wide area of eastern Japan has been contaminated with cesium, experts are calling for close monitoring of soil and produce. The education ministry conducted soil surveys in June and July at 2,200 locations within 100 km of the crippled plant. At 34 locations in six municipalities in Fukushima Prefecture, including Minamisoma, Namie and Iitate, the data said cesium levels had exceeded 1.48 million becquerels per sq. meter — the same level that was used to define the exclusion zone around Chernobyl in 1986. Yasuyuki Muramatsu, a radiochemistry professor at Gakushuin University, said that agricultural contamination will likely peak this year because cesium binds more strongly with minerals in soil as time passes, making it more difficult to be absorbed by plant roots.
  • The ratio of cesium-134 to cesium-137 in the Fukushima accident is estimated as 1-to-1, while the ratio during the 1986 Chernobyl disaster was 1-to-2. This indicates the radiation in Fukushima will weaken at a faster rate than at Chernobyl. Between April and early August, the farm ministry tested soil at some 580 locations in six prefectures, including Fukushima, Tochigi and Gunma, to get a better picture of the full extent of contamination.
  • According to the results, 40 locations in Fukushima Prefecture had an intensity exceeding 5,000 becquerels per kilogram — the government's maximum limit for growing rice. Many municipalities within 30 km of the Fukushima No. 1 plant were banned from planting rice based on similar tests conducted in April. In addition, the ministry has asked 17 prefectures in eastern Japan to conduct two-phase radiation tests on harvested rice.
  • So far, none of the tests performed on unmilled rice — including from Fukushima — exceeded the government's limit of 500 becquerels per kilogram. Masanori Nonaka, an agriculture professor at Niigata University who specializes in soil science, said rice grown in contaminated areas is likely to be tainted, but to what extent is anyone's guess. White rice, however, may prove to be safe, Nonaka said. Because most of the radioactive material will adhere to the bran — the part of the husk left behind after hulling — about 60 percent of the cesium can be removed just by polishing it, he explained. Other foods, such as marine produce, won't be as easy to handle, experts say. After the Chernobyl accident, for example, the radioactive contamination of fish peaked between 6 to 12 months after the disaster. The Fisheries Agency, meanwhile, has asked nine prefectures on the Pacific coast to increase their sampling rates to prevent contaminated fish from landing in supermarkets.
D'coda Dcoda

Permitted Un-Safe Radiation levels allowed in Food [20Sep11] - 1 views

http://foodwatch.de/foodwatch/content/e36/e68/e42217/e44994/e45033/2011-09-20pressreleasefoodwatch_IPPNW_EN_ger.pdf Diigo won't highlight on pdf's, this one is important and concerns current level...

food and drink

started by D'coda Dcoda on 07 Oct 11 no follow-up yet
D'coda Dcoda

Fracking - energy revolution or skillfully marketed mirage? [27Jun11] - 0 views

  • The New York Times published an article on Sunday, June 26, 2011 titled Insiders Sound an Alarm Amid a Natural Gas Rush. The article quotes a number of emails from natural gas industry insiders, financial analysts that cover the gas industry and skeptical geologists to produce a number of questions about the long term viability of an increasing dependence on cheap natural gas from hydraulic fracturing. The message is that the gas industry has been engaging in hyperbole regarding its capacity to expand production at current prices to meet market demands.
  • the people quoted in the NY Times article do not agree that the technique magically produces low cost gas in unprecedented abundance.
  • “Our engineers here project these wells out to 20-30 years of production and in my mind that has yet to be proven as viable,” wrote a geologist at Chesapeake in a March 17 e-mail to a federal energy analyst. “In fact I’m quite skeptical of it myself when you see the % decline in the first year of production.”
  • ...12 more annotations...
  • “In these shale gas plays no well is really economic right now,” the geologist said in a previous e-mail to the same official on March 16. “They are all losing a little money or only making a little bit of money.”
  • Around the same time the geologist sent the e-mail, Mr. McClendon, Chesapeake’s chief executive, told investors, “It’s time to get bullish on natural gas.”
  • Aubrey McClendon, whose name is not terribly familiar to people outside of the energy industry, has an enormous financial interest in encouraging customers to become addicted to natural gas so that they will keep buying even if the price shoots up – like it did in the period from 2000-2008. During that time McClendon and his company rode a wave that resulted in growing a company from tiny to huge based on debt-financed investments in leases and drilling rigs designed to produce gas in the midcontinent region of the US. A high portion of the company’s wells were stimulated with hydraulic fracturing.
  • When the price of natural gas collapsed in 2008, mostly as a result of the contraction in demand caused by the financial crisis and resulting economic recession/depression, McClendon nearly lost control of his company. He had to sell “substantially all” of shares at a dramatically lowered price in order to pay off creditors and meet margin calls.
  • No U.S. chief executive officer has bought more of his own company’s stock in recent years than McClendon, even as the shares reached all-time highs. His appetite for Chesapeake stock made him “a darling of Wall Street,” Tulsa money manager Jake Dollarhide said. But his purchases were made on margin, meaning he used borrowed money. As the value of the stock fell, McClendon was forced to raise cash to meet margin calls. Recent losses — Chesapeake shares have plummeted 60 percent in the past three weeks — left him unable to fulfill those requirements.Read more: http://newsok.com/market-slide-wipes-out-ceos-chesapeake-holdings/article/3310107#ixzz1QSst9NnL
  • McClendon responded vigorously to the NY Times’s suggestion that the gas revolution was more mirage than miracle in a lengthy letter to Chesapeake Energy employees that was published on the company’s public Facebook page. (Note: The timing of this letter with regard to the NY Times article is telling. The article appeared in the Sunday edition of the Times on June 26, 2011. The letter to employees included a time stamp indicating that it was released at 8:37 pm on the same day while the Facebook page indicates that it was posted to the world by 11:27 pm. In other words – there is no rest for the weary in the Internet era.)
  • McClendon’s letter blamed the NY Times article on environmental activists that proclaim a desire to supply all of the US energy needs from wind and solar energy. It also issued a call to action for Chesapeake Energy employees:
  • We hope that every Chesapeake employee can be part of our public education outreach. At more than 11,000 strong, we are an army of “factivists” – people who have knowledge of the facts and the personal knowledge and ability to spread them. You can do this by talking to your families, friends and others in your spheres of influence (schools, churches, civic organizations, etc) about the kind of company you work for and the integrity of what we do every day for our shareholders, our communities, our states, our nation, our economy and our environment. You don’t have to be an expert to stand up and tell folks that Chesapeake is committed to doing what’s right – and that commitment is expressed every day by you and your colleagues across the company.
  • You can also get involved by joining Chesapeake Fed PAC, our political action committee. Our opponents are extremely well funded and organized. We need to make sure our voice is heard in Washington, DC and with elected officials who are making decisions that affect our industry, our company and our ability to operate in the many states in which shale gas and oil have been discovered.
  • After describing how Chesapeake has 125 active drilling rigs and how it has developed a “swat team” with more than 100 employees that works with environmental groups to produce legislation designed to slow the development of new coal fired power plants and to hasten the closure of existing coal plants, Tom Price said the following:
  • “It’s been said before, but the demand side of the equation is extremely important right now. I mean this really is a zero sum game. I think that there are a number of very progressive utilities out there that recognize the challenges that they are facing with regard to climate change, but the Transport Rule, Clean Air Act and various others.”
  • I remain convinced that there is a market battle going on between natural gas and nuclear energy.
1 - 20 of 168 Next › Last »
Showing 20 items per page