Skip to main content

Home/ OARS funding Engineering/ Group items matching "nsf" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
1More

Nano-Biosensing | NSF - National Science Foundation - 0 views

  •  
    The Nano-Biosensing program is part of the Engineering Biology and Health cluster, which includes also 1) Cellular and Biochemical Engineering; 2) Engineering of Biomedical Systems; 3) Biophotonics; and 4) Disability and Rehabilitation Engineering. The Nano-Biosensing program supports fundamental engineering research on devices and methods for measurement and quantification of biological analytes. Proposals that incorporate emerging nanotechnology methods are especially encouraged. Areas of interest include: Multi-purpose sensor platforms that exceed the performance of current state-of-the-art devices. Novel transduction principles, mechanisms and sensor designs suitable for measurement in practical matrix and sample-preparation-free approaches. These include error-free detection of pathogens and toxins in food matrices, waterborne pathogens, parasites, toxins, biomarkers in body fluids, and others that improve human condition. Nano-biosensors that enable measurement of biomolecular interactions in their native states, transmembrane transport, intracellular transport and reactions, and other biological phenomena. Studies that examine intracellular measurements must include discussion on the significance of the measurement.
1More

Thermal Transport Processes | NSF - National Science Foundation - 0 views

  •  
    The Thermal Transport Processes program is part of the Transport Phenomena cluster, which includes also 1) Combustion and Fire Systems; 2) Fluid Dynamics; and 3) Particulate and Multiphase Processes. The Thermal Transport Processes (TTP) program supports engineering research projects that lay the foundation for new discoveries in thermal transport phenomena. These projects should either develop new fundamental knowledge or combine existing knowledge in thermodynamics, fluid mechanics, and heat and mass transfer to probe new areas of innovation. The program seeks transformative projects with the potential for improving our basic understanding, predictability and application of thermal transport processes. Projects should articulate the contribution(s) to the fundamental knowledge supporting thermal transport processes and state clearly the potential application(s) impact when appropriate. Projects that combine analytical, experimental and numerical efforts, geared toward understanding, modeling and predicting thermal phenomena, are of great interest. Collaborative and interdisciplinary proposals for which the main contribution is in thermal transport processes fundamentals are also encouraged.
1More

Innovations in Graduate Education (IGE) Program | NSF - National Science Foundation - 0 views

  •  
    The Innovations in Graduate Education (IGE) program is designed to encourage the development and implementation of bold, new, and potentially transformative approaches to STEM graduate education training. The program seeks proposals that explore ways for graduate students in research-based master's and doctoral degree programs to develop the skills, knowledge, and competencies needed to pursue a range of STEM careers. IGE focuses on projects aimed at piloting, testing, and validating innovative and potentially transformative approaches to graduate education. IGE projects are intended to generate the knowledge required for their customization, implementation, and broader adoption. The program supports testing of novel models or activities with high potential to enrich and extend the knowledge base on effective graduate education approaches. The program addresses both workforce development, emphasizing broad participation, and institutional capacity building needs in graduate education. Strategic collaborations with the private sector, non-governmental organizations (NGOs), government agencies, national laboratories, field stations, teaching and learning centers, informal science centers, and academic partners are encouraged.
1More

Research Experiences for Teachers (RET) in Engineering and Computer Science | NSF - Nat... - 0 views

  •  
    NSF's Directorate for Engineering (ENG) and the Directorate for Computer and Information Science and Engineering (CISE) have joined to support the Research Experiences for Teachers (RET) in Engineering and Computer Science program. This program supports active long-term collaborative partnerships between K-12 Science, Technology, Engineering, Computer and Information Science, and Mathematics (STEM) in-service and pre-service teachers, full-time community college faculty, and university
1More

Operations Engineering | NSF - National Science Foundation - 0 views

  •  
    The Operations Engineering (OE) program supports fundamental research on advanced analytical methods for improving operations in complex decision-driven environments. Analytical methods include, but are not limited to, deterministic and stochastic modeling, optimization, decision and risk analysis, data science, and simulation. Methodological research is highly encouraged but must be motivated by problems that have potential for high impact in engineering applications. Application domains of particular interest to the program arise in commercial enterprises (e.g., production/manufacturing systems and distribution of goods, delivery of services), the public sector/government (e.g., public safety and security), and public/private partnerships (e.g., health care, environment and energy). The program also welcomes operations research in new and emerging domains and addressing systemic societal or technological problems. The OE program particularly values cross-disciplinary proposals that leverage application-specific expertise with strong quantitative analysis in a decision-making context. Proposals for methodological research that are not strongly motivated by high-potential engineering applications are not appropriate for this program.
1More

Mind, Machine and Motor Nexus | NSF - National Science Foundation - 0 views

  •  
    The Mind, Machine and Motor Nexus (M3X) program supports fundamental research at the intersection of mind, machine and motor. A distinguishing characteristic of the program is an integrated treatment of human intent, perception, and behavior in interaction with embodied and intelligent engineered systems and as mediated by motor manipulation. M3X projects should advance the holistic analysis of cognition and of embodiment as present in both human and machine elements. This work will encompass not only how mind interacts with motor function in the manipulation of machines, but also how, in turn, machine response and function may shape and influence both mind and motor function.
1More

Division of Materials Research: Topical Materials Research Programs | NSF - National Sc... - 0 views

  •  
    Research supported by the Division of Materials Research (DMR) focuses on advancing fundamental understanding of materials, materials discovery, design, synthesis, characterization, properties, and materials-related phenomena. DMR awards enable understanding of the electronic, atomic, and molecular structures, mechanisms, and processes that govern nanoscale to macroscale morphology and properties; manipulation and control of these properties; discovery of emerging phenomena of matter
1More

Semiconductor Synthetic Biology for Information Processing and Storage Technologies | N... - 0 views

  •  
    New information technologies can be envisioned that are based on biological principles and that use biomaterials in the fabrication of devices and components; it is anticipated that these information technologies could enable stored data to be retained for more than 100 years and storage capacity to be 1,000 times greater than current capabilities. These could also facilitate compact computers that will operate with substantially lower power than today's computers. Research in support of these goals can have a significant impact on advanced information processing and storage technologies. This focused solicitation seeks high-risk/high-return interdisciplinary research on novel concepts and enabling technologies that will address the scientific issues and technological challenges associated with the underpinnings of synthetic biology integrated with semiconductor technology. This research will foster interactions among various disciplines including biology, engineering, physics, chemistry, materials science, computer science, and information science that will enable heretofore-unanticipated breakthroughs as well as meet educational goals.
1More

Scalable Parallelism in the Extreme | NSF - National Science Foundation - 0 views

  •  
    Computing systems have undergone a fundamental transformation from the single-core processor-devices of the turn of the century to today's ubiquitous and networked devices with multicore/many-core processors along with warehouse-scale computing via the cloud. At the same time, semiconductor technology is facing fundamental physical limits and single-processor performance has plateaued. This means that the ability to achieve performance improvements through improved processor technologies alone has ended. In recognition of this obstacle, the recent National Strategic Computing Initiative (NSCI) encourages collaborative efforts to develop, "over the next 15 years, a viable path forward for future high-performance computing (HPC) systems even after the limits of current semiconductor technology are reached (the 'post-Moore's Law era')."
1More

Spectrum Efficiency, Energy Efficiency, and Security (SpecEES): Enabling Spectrum for A... - 0 views

  •  
    The National Science Foundation's Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE) are coordinating efforts to identify bold new concepts to significantly improve the efficiency of radio spectrum utilization while addressing new challenges in energy efficiency and security, thus enabling spectrum access for all users and devices, and allowing traditionally underserved Americans to benefit from wireless-enabled goods and services. The SpecEES program solicitation (pronounced "SpecEase") seeks to fund innovative collaborative research that transcends the traditional boundaries of existing programs.
1More

Science of Learning | NSF - National Science Foundation - 0 views

  •  
    The Science of Learning program supports potentially transformative basic research to advance the science of learning. The goals of the SL Program are to develop basic theoretical insights and fundamental knowledge about learning principles, processes and constraints. Projects that are integrative and/or interdisciplinary may be especially valuable in moving basic understanding of learning forward but research with a single discipline or methodology is also appropriate if it addresses basic scientific questions in learning. The possibility of developing connections between proposed research and specific scientific, technological, educational, and workforce challenges will be considered as valuable broader impacts, but are not necessarily central to the intellectual merit of proposed research. The program will support research addressing learning in a wide range of domains at one or more levels of analysis including: molecular/cellular mechanisms; brain systems; cognitive affective, and behavioral processes; and social/cultural influences. The program supports a variety of methods including: experiments, field studies, surveys, secondary-data analyses, and modeling.
1More

Engineering for Civil Infrastructure | NSF - National Science Foundation - 0 views

  •  
    The Engineering for Civil Infrastructure (ECI) program supports fundamental research that will shape the future of our nation's constructed civil infrastructure, subjected to and interacting with the natural environment, to meet the needs of humans. In this context, research driven by radical rethinking of traditional civil infrastructure in response to emerging technological innovations, changing population demographics, and evolving societal needs is encouraged.
1More

Broadening Participation in Engineering | NSF - National Science Foundation - 0 views

  •  
    The Broadening Participation in Engineering (BPE) Program is a Directorate-wide initiative dedicated to supporting the development of a diverse and well-prepared engineering workforce. Across every educational juncture (e.g., elementary, secondary, and postsecondary levels), efforts to improve engineering interests, preparation, connections, experiences, and opportunities among underrepresented groups is of major importance to BPE.
1More

Cyberinfrastructure Centers of Excellence - 0 views

  •  
    The Nation's advanced research cyberinfrastructure (CI) ecosystem catalyzes discovery and innovation across all areas of science and engineering (S&E) research and education. The increasingly complex and rapidly evolving S&E landscape requires an agile, integrated, robust, trustworthy, and sustainable CI ecosystem that will drive new thinking and transformative discoveries in all areas of research and education. The success of this vision depends on the ability of the research community to be able to easily and effectively access and use state-of-the-art research CI resources and services in a timely way. This, in turn, drives a set of requirements on the development, operation, and evolution of the CI ecosystem. First, research CI resources and services must be designed to leverage and drive innovations, and they must be user-centric and interoperable to enable the efficient, flexible end-to-end discovery pathways that are increasingly essential for the conduct of research. Second, the information, expertise, and services needed to maximally utilize the CI ecosystem must be disseminated broadly and concertedly to the research community. The nsf Cyberinfrastructure Centers of Excellence (CI CoE) Program aims to realize the above vision by supporting hubs of expertise and innovation targeting specific areas, aspects, or stakeholder communities of the research CI ecosystem.
1More

Semiconductor Synthetic Biology for Information Storage and Retrieval - 0 views

  •  
    The National Science Foundation (NSF), through its Divisions of Electrical, Communications and Cyber Systems (ECCS), Computing and Communication Foundations (CCF), Molecular and Cellular Biosciences (MCB), and Materials Research (DMR) announces a follow-up solicitation on the Semiconductor Synthetic Biology for Information Storage and Retrieval Program (SemiSynBio-II). Future ultra-low energy storage-based computing systems can be built on principles derived from organic systems that are at the intersection of physics, chemistry, biology, computer science and engineering. Next-generation information storage technologies can be envisioned that are driven by biological principles and use biomaterials in the fabrication of devices and systems that can store data for more than 100 years with storage capacity 1,000 times more than current storage technologies. Such a research effort can have a significant impact on the future of information storage and retrieval technologies. This focused solicitation seeks high-risk/high-return interdisciplinary research on novel concepts and enabling technologies that will address the fundamental scientific issues and technological challenges associated with the underpinnings of synthetic biology integrated with semiconductor technology. This research will foster interactions among various disciplines including biology, physics, chemistry, materials science, computer science and engineering that will enable in heretofore unanticipated breakthroughs.
1More

About | I-Corps@Ohio - 0 views

shared by MiamiOH OARS on 03 Dec 19 - No Cached
  •  
    I-Corps@Ohio is a statewide program developed to assist faculty, staff and students from Ohio universities, colleges and community colleges in validating the market potential of technologies and launching startup companies. I-Corps@Ohio is modeled after the National Science Foundation's (NSF) successful I-Corps (Innovation Corps) program, which has been proven to increase innovation, entrepreneurship, and industry collaboration. The I-Corps@Ohio program incorporates lean launch, customer discovery and business model innovation methodologies to assess technologies, enhance the business acumen of research faculty and students and expand their entrepreneurial network relationships. Two cohort tracks are offered in Science & Engineering and Medtech, with each designed to offer both common and subject matter specific content. The long-term objective of I-Corps@Ohio is to systematically build a steady and predictable pipeline of  high-quality, high-growth startups from technology developed at the State's colleges, universities, and research institutions, that contribute to economic development in Ohio.
1More

Addressing Systems Challenges through Engineering Teams | NSF - National Science Founda... - 0 views

  •  
    The Electrical, Communications and Cyber Systems Division (ECCS) supports enabling and transformative engineering research at the nano, micro, and macro scales that fuels progress in engineering system applications with high societal impact. This includes fundamental engineering research underlying advanced devices and components and their seamless penetration in power, controls, networking, communications or cyber systems. The research is envisioned to be empowered by cutting-edge computation, synthesis, evaluation, and analysis technologies and is to result in significant impact for a variety of application domains in healthcare, homeland security, disaster mitigation, telecommunications, energy, environment, transportation, manufacturing, and other systems-related areas. ECCS also supports new and emerging research areas encompassing 5G and Beyond Spectrum and Wireless Technologies, Quantum Information Science, Artificial Intelligence, Machine Learning, and Big Data.
1More

Computer Science for All - 0 views

  •  
    This program aims to provide all U.S. students with the opportunity to participate in computer science (CS) and computational thinking (CT) education in their schools at the preK-12 levels. With this solicitation, the National Science Foundation (NSF) focuses on both research and researcher-practitioner partnerships (RPPs) that foster the research and development needed to bring CS and CT to all schools. Specifically, this solicitation aims to provide (1) high school teacherswith the preparation, professional development (PD) and ongoing support they need to teach rigorous computer science courses; (2) preK-8 teachers with the instructional materials and preparation they need to integrate CS and CT into their teaching; and (3) schools and districtswith the resources needed to define and evaluate multi-grade pathways in CS and CT.
1More

Re-entry to Active Research Program | NSF - National Science Foundation - 0 views

  •  
    The Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET) and the Division of Chemistry (CHE) are conducting a Re-entry to Active Research (RARE) program to reengage, retrain, and broaden participation within the academic workforce. The primary objective of the RARE program is to catalyze the advancement along the academic tenure-track of highly meritorious individuals who are returning from a hiatus from active research. By providing re-entry points to active academic research, the RARE program will reinvest in the nation's most highly trained scientists and engineers, while broadening participation and increasing diversity of experience. A RARE research proposal must describe potentially transformative research that falls within the scope of participating CBET or CHE programs.
1More

NSF Mechanics of Materials - 0 views

  •  
    The Mechanics of Materials program supports fundamental research on the behavior of solid materials and respective devices under external actions.?? A diverse and interdisciplinary spectrum of research is supported with emphasis placed on fundamental understanding that i) advances theory, experimental, and/or computational methods in Mechanics of Materials, and/or ii) uses contemporary Mechanics of Materials methods to address modern challenges in material and device mechanics and physics. Proposed research can focus on existing or emerging material systems across time and length scales. Intellectual merit typically includes advances in fundamental understanding of deformation, fracture, fatigue, and contact through constitutive modeling, multiscale and multiphysics analysis, computational methods, or experimental techniques.??Recent interests comprise, but are not limited to:?? contemporary materials including multiphase materials and material systems, soft materials, active materials, low-dimensional materials, phononic/elastic metamaterials, friction, wear;??multiphysics methods, mechanics at the nano, meso and microscale and multiscale integration thereof, as well as approaches incorporating fundamental understanding of physics and chemistry into the continuum-level understanding of the response characteristics of materials and material systems.
« First ‹ Previous 581 - 600 of 624 Next › Last »
Showing 20 items per page