Skip to main content

Home/ OARS funding Engineering/ Group items matching "mechanical" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
1More

nsf.gov - Funding - Fluid Dynamics - US National Science Foundation (NSF) - 0 views

  •  
    The Fluid Dynamics program supports fundamental research and education on mechanisms and phenomena governing fluid flow.  Proposed research should contribute to basic understanding; thus enabling the better design; predictability; efficiency; and control of systems that involve fluids.  Encouraged are proposals that address innovative uses of fluids in materials development; manufacturing; biotechnology; nanotechnology; clinical diagnostics and drug delivery; sensor development and integration; energy and the environment. While the research should focus on fundamentals, a clear connection to potential application should be outlined.
1More

Grants.gov - Find Grant Opportunities - Opportunity Synopsis - 0 views

  •  
    The PRORP Idea Development Award is designed to promote new ideas that are still in the early stages of development and have the potential to yield highly impactful data and new avenues of investigation. This mechanism supports conceptually innovative, high-risk/high-reward research that could lead to critical discoveries or major advancements that will accelerate progress in the clinical care of combat-related orthopaedic injuries. Applications should include a well-formulated, testable hypothesis based on strong scientific rationale.
1More

Press Release: FY13 Peer Reviewed Orthopaedic Research Program, Congressionally Directe... - 0 views

  •  
    The Department of Defense Peer Reviewed Orthopaedic Research Program (PRORP) is administered by the US Army Medical Research and Materiel Command (USAMRMC) through the Office of the Congressionally Directed Medical Research Programs (CDMRP). Congressional funds for the FY13 PRORP have not yet been appropriated, and this document is not to be construed as an obligation by the Government; there is no guarantee of funding for the program. However, the PRORP anticipates releasing program announcements in February 2013, and the information provided in this pre-announcement is intended to allow investigators time to plan and develop applications. Focus Areas: The FY13 PRORP plans to solicit research applications that address the following focus areas, which are subject to change. Information on the final focus areas and the award mechanisms to which they correspond will be included in the program announcements when they are posted
1More

NIST Consortium for Semiconductor and Future Computing Research Grant Program - 0 views

  •  
    NIST is soliciting proposals for financial assistance from eligible applicants to support basic research, in a consortium-based setting, focused on the long-term research needs of industry in the area of future computing and information processing. There is a critical need for scientific and engineering advances in novel computing paradigms with long-term impact on the semiconductor, electronics, computing, and defense industries. The proposed activities should advance the physical and materials aspects of future computing technologies with a focus on alternatives that provide low latency, low energy per operation, improved data/communication bandwidth, and higher clock speed. Activities should include innovative research in devices, circuits, architectures, metrology or characterization to enable future computing paradigms. Applicants should create mechanisms for extended collaboration with NIST researchers.
1More

NIST Consortium for Semiconductor and Future Computing Research Grant Program - 0 views

  •  
    NIST is soliciting proposals for financial assistance from eligible applicants to support basic research, in a consortium-based setting, focused on the long-term research needs of industry in the area of future computing and information processing. There is a critical need for scientific and engineering advances in novel computing paradigms with long-term impact on the semiconductor, electronics, computing, and defense industries. The proposed activities should advance the physical and materials aspects of future computing technologies with a focus on alternatives that provide low latency, low energy per operation, improved data/communication bandwidth, and higher clock speed. Activities should include innovative research in devices, circuits, architectures, metrology or characterization to enable future computing paradigms. Applicants should create mechanisms for extended collaboration with NIST researchers.
1More

Condensed Matter and Materials Theory - 0 views

  •  
    The broad spectrum of research supported in CMMT includes first-principles, quantum many-body, statistical mechanics, classical and quantum Monte Carlo, and molecular dynamics methods. Computational efforts span from workstations to advanced and high-performance scientific computing. Emphasis is on approaches that begin at the smallest appropriate length scale, such as electronic, atomic, molecular, nano-, micro-, and mesoscale, required to yield fundamental insight into material properties, processes, and behavior, to predict new materials and states of matter, and to reveal new materials-related phenomena. Approaches that span multiple scales of length and time may be required to advance fundamental understanding of materials properties and phenomena, particularly for polymeric materials and soft matter. Examples of areas of recent interest appear in the program description. CMMT encourages potentially transformative theoretical and computational materials research, which includes but is not limited to: i) developing materials-specific prediction and advancing understanding of properties, phenomena, and emergent states of matter associated with either hard or soft materials, ii) developing and exploring new paradigms including cyber- and data-enabled approaches to advance fundamental understanding of materials and materials related phenomena, oriii) fostering research at interfaces among subdisciplines represented in the Division of Materials Research
1More

Ceramics - 0 views

  •  
    This program supports fundamental scientific research in ceramics (e.g., oxides, carbides, nitrides and borides), glass-ceramics, inorganic glasses, ceramic-based composites and inorganic carbon-based materials. Projects should be centered on experiments; inclusion of computational and theory components are encouraged. The objective of the program is to increase fundamental understanding and to develop predictive capabilities for relating synthesis, processing, and microstructure of these materials to their properties and ultimate performance in various environments and applications. Research to enhance or enable the discovery or creation of new ceramic materials is welcome. Development of new experimental techniques or novel approaches to carry out projects is encouraged. Topics supported include basic processes and mechanisms associated with nucleation and growth of thin films; bulk crystal growth; phase transformations and equilibria; morphology; surface modification; corrosion, interfaces and grain boundary structure; and defects. Additional Information Eligibility rules apply for submissions; please see the Program Description section of the CER solicitation for details. PIs are encouraged to include all anticipated broader impact activities in their initial proposals, rather than planning on supplemental requests. Most projects include: (1) the anticipated significance on science, engineering and/or technology including possible benefits to society, (2) plans for the dissemination, and (3) broadening participation of underrepresented groups and/or excellence in training, mentoring, and/or teaching. Many successful proposals include one additional broader impact activity.
1More

Process Systems, Reaction Engineering and Molecular Thermodynamics | NSF - National Sci... - 0 views

  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding
1More

DOD Parkinson's Impact Award - 0 views

  •  
    The PRP Impact Award mechanism is being offered for the first time in FY16.The Impact Award encourages applications that support the full spectrum of research projects or ideas that specifically focus on scientific and clinical Parkinson's disease issues, which, if successfully addressed, have the potential to make a major impact in preventing or halting the progression of Parkinson's disease or enhancing the well-being of individuals experiencing the impact of the disease
1More

Collaborative Research in Computational Neuroscience (CRCNS) (nsf16607) | NSF - Nationa... - 0 views

  •  
    Computational neuroscience provides a theoretical foundation and a rich set of technical approaches for understanding complex neurobiological systems, building on the theory, methods, and findings of computer science, neuroscience, and numerous other disciplines. Through the CRCNS program, the National Science Foundation (NSF), the National Institutes of Health (NIH), the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF), the French National Research Agency (Agence Nationale de la Recherche, ANR), and the United States-Israel Binational Science Foundation (BSF) support collaborative activities that will advance the understanding of nervous system structure and function, mechanisms underlying nervous system disorders, and computational strategies used by the nervous system. 
1More

Science of Learning | NSF - National Science Foundation - 0 views

  •  
    The Science of Learning program supports potentially transformative basic research to advance the science of learning. The goals of the SL Program are to develop basic theoretical insights and fundamental knowledge about learning principles, processes and constraints. Projects that are integrative and/or interdisciplinary may be especially valuable in moving basic understanding of learning forward but research with a single discipline or methodology is also appropriate if it addresses basic scientific questions in learning.   The possibility of developing connections between proposed research and specific scientific, technological, educational, and workforce challenges will be considered as valuable broader impacts, but are not necessarily central to the intellectual merit of proposed research. The program will support  research addressing learning in a wide range of domains at one or more levels of analysis including: molecular/cellular mechanisms; brain systems; cognitive affective, and behavioral processes; and social/cultural influences. The program supports a variety of methods including: experiments, field studies, surveys, secondary-data analyses, and modeling.
1More

Smart and Autonomous Systems (S&AS) - 0 views

  •  
    The Smart and Autonomous Systems (S&AS) program focuses on Intelligent Physical Systems (IPS) that are cognizant, taskable, reflective, ethical, and knowledge-rich. The S&AS program welcomes research on IPS that are aware of their capabilities and limitations, leading to long-term autonomy requiring minimal or no human operator intervention. Example IPS include, but are not limited to, robotic platforms and networked systems that combine computing, sensing, communication, and actuation. Cognizant IPS exhibit high-level awareness beyond primitive actions, in support of persistent and long-term autonomy. Taskable IPS can interpret high-level, possibly vague, instructions, translating them into concrete actions that are dependent on the particular context in which the IPS is operating. Reflective IPS can learn from their own experiences and those of other entities, such as other IPS or humans, and from instruction or observation; they may exhibit self-aware and self-optimizing capabilities. Ethical IPS should adhere to a system of societal and legal rules, taking those rules into account when making decisions. Knowledge-rich IPS employ a variety of representation and reasoning mechanisms, such as semantic, probabilistic and commonsense reasoning; are cognitively plausible; reason about uncertainty in decision making; and reason about the intentions of other entities in decision making.
1More

Smart and Autonomous Systems (S&AS)| NSF - National Science Foundation - 0 views

  •  
    The Smart and Autonomous Systems (S&AS) program focuses on Intelligent Physical Systems (IPS) that are cognizant, taskable, reflective, ethical, and knowledge-rich. The S&AS program welcomes research on IPS that are aware of their capabilities and limitations, leading to long-term autonomy requiring minimal or no human operator intervention. Example IPS include, but are not limited to, robotic platforms and networked systems that combine computing, sensing, communication, and actuation. Cognizant IPS exhibit high-level awareness beyond primitive actions, in support of persistent and long-term autonomy. Taskable IPS can interpret high-level, possibly vague, instructions, translating them into concrete actions that are dependent on the particular context in which the IPS is operating. Reflective IPS can learn from their own experiences and those of other entities, such as other IPS or humans, and from instruction or observation; they may exhibit self-aware and self-optimizing capabilities. Ethical IPS should adhere to a system of societal and legal rules, taking those rules into account when making decisions. Knowledge-rich IPS employ a variety of representation and reasoning mechanisms, such as semantic, probabilistic and commonsense reasoning; are cognitively plausible; reason about uncertainty in decision making; and reason about the intentions of other entities in decision making.
1More

Nano-Biosensing | NSF - National Science Foundation - 0 views

  •  
    The Nano-Biosensing program is part of the Engineering Biology and Health cluster, which includes also 1) Cellular and Biochemical Engineering; 2) Engineering of Biomedical Systems; 3) Biophotonics; and 4) Disability and Rehabilitation Engineering. The Nano-Biosensing program supports fundamental engineering research on devices and methods for measurement and quantification of biological analytes. Proposals that incorporate emerging nanotechnology methods are especially encouraged. Areas of interest include: -Multi-purpose sensor platforms that exceed the performance of current state-of-the-art devices. -Novel transduction principles, mechanisms and sensor designs suitable for measurement in practical matrix and sample-preparation-free approaches. These include error-free detection of pathogens and toxins in food matrices, waterborne pathogens, parasites, toxins, biomarkers in body fluids, and others that improve human condition. -Nano-biosensors that enable measurement of biomolecular interactions in their native states, transmembrane transport, intracellular transport and reactions, and other biological phenomena. -Studies that examine intracellular measurements must include discussion on the significance of the measurement. 
1More

Thermal Transport Processes | NSF - National Science Foundation - 0 views

  •  
    The Thermal Transport Processes (TTP) program supports engineering research projects that lay the foundation for new discoveries in thermal transport phenomena. These projects should either develop new fundamental knowledge or combine existing knowledge in thermodynamics, fluid mechanics, and heat and mass transfer to probe new areas of innovation. The program seeks transformative projects with the potential for improving our basic understanding, predictability and application of thermal transport processes. Projects should articulate the contribution(s) to the fundamental knowledge supporting thermal transport processes and state clearly the potential application(s) impact when appropriate. Projects that combine analytical, experimental and numerical efforts, geared toward understanding, modeling and predicting thermal phenomena, are of great interest. Collaborative and interdisciplinary proposals for which the main contribution is in thermal transport processes fundamentals are also encouraged.
1More

nsf.gov - Funding - Process and Reaction Engineering - US National Science Foundation (... - 0 views

  •  
    The Process and Reaction Engineering program supports fundamental and applied research on: Rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials Chemical and biochemical phenomena occurring at or near solid surfaces and interfaces Electrochemical and photochemical processes of engineering significance or with commercial potential Design and optimization of complex chemical and biochemical processes Dynamic modeling and control of process systems and individual process units Reactive processing of polymers, ceramics, and thin films Interactions between chemical reactions and transport processes in reactive systems, and the use of this information in the design of complex chemical and biochemical reactors  Recent emphasis on the development of sustainable energy technologies means that the support of projects on the processing aspects of chemical systems that further such technologies have high priority when funding decisions are made. Areas that focus on reactors of all types - fuel cells, batteries, microreactors, biochemical reactors, etc.; reactor design in general; and design and control of all systems associated with energy from renewable sources, have high priority for funding.
1More

nsf.gov - Funding - Biomedical Engineering - US National Science Foundation (NSF) - 0 views

  •  
    The mission of the Biomedical Engineering (BME) program is to provide opportunities to develop novel ideas into discovery-level and transformative projects that integrate engineering and life science principles in solving biomedical problems that serve humanity in the long-term.  The Biomedical Engineering (BME) program supports fundamental research in the following BME themes: Neural engineering (brain science, computational neuroscience, brain-computer interface, neurotech, cognitive engineering) Cellular biomechanics (motion, deformation, and forces in biological systems; how mechanical forces alter cell growth, differentiation, movement, signal transduction, transport, cell adhesion, cell cytoskeleton dynamics, cell-cell and cell-ECM interactions; genetically engineered stem cell differentiation with long-term impact in tissue repair and regenerative medicine) The BME projects must be at the interface of engineering and life sciences, and advance both engineering and life sciences.  The projects should focus on high impact transforming methods and technologies. The project should include methods, models and tools of understanding and controlling of living systems; fundamental improvements in deriving information from cells, tissues, organs, and organ systems; new approaches to the design of structures and materials for eventual medical use in the long-term; and new novel methods of reducing health care costs through new technologies. The projects should emphasize the advancement of fundamental engineering knowledge, possibly leading to the development of new methods and technologies in the long-term; and highlight multi-disciplinary nature, integrating engineering and the sciences. The long-term impact of the projects can be related to disease diagnosis and/or treatment, improved health care delivery, or product development.
1More

nsf.gov - Funding - Process and Reaction Engineering - US National Science Foundation (... - 0 views

  •  
    The Process and Reaction Engineering program supports fundamental and applied research on: Rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials Chemical and biochemical phenomena occurring at or near solid surfaces and interfaces Electrochemical and photochemical processes of engineering significance or with commercial potential Design and optimization of complex chemical and biochemical processes Dynamic modeling and control of process systems and individual process units Reactive processing of polymers, ceramics, and thin films Interactions between chemical reactions and transport processes in reactive systems, and the use of this information in the design of complex chemical and biochemical reactors  Recent emphasis on the development of sustainable energy technologies means that the support of projects on the processing aspects of chemical systems that further such technologies have high priority when funding decisions are made. Areas that focus on reactors of all types - fuel cells, batteries, microreactors, biochemical reactors, etc.; reactor design in general; and design and control of all systems associated with energy from renewable sources, have high priority for funding.
1More

nsf.gov - Funding - Research Experiences for Teachers (RET) in Engineering and Computer... - 0 views

  •  
    The Directorate for Engineering (ENG) and the Directorate for Computer and Information Science and Engineering (CISE),  Research Experiences for Teachers (RET) in Engineering and Computer Science program supports the active involvement of K-12 science, technology, engineering, computer and information science, and mathematics (STEM) teachers and community college faculty in engineering and computer science research in order to bring knowledge of engineering, computer science, and technological innovation into their classrooms. The goal is to help build long-term collaborative partnerships between K-12 STEM teachers, community college faculty, and the NSF university research community by involving the teachers and community college faculty in engineering and computer science research and helping them translate their research experiences and new knowledge into classroom activities.  Partnerships with inner city schools or other high needs schools are especially encouraged, as is participation by underrepresented minorities, women, and persons with disabilities. This announcement features two mechanisms for support of in-service and pre-service K-12 STEM teachers and community college faculty: RET supplements to ongoing ENG or CISE awards and new RET Site awards. RET supplements may be included in proposals for new or renewed NSF Directorate for Engineering (ENG) or CISE grants or as supplements to ongoing NSF ENG or CISE funded projects. RET in Engineering and Computer Science Sites are based on independent proposals from engineering or computer and information science departments, schools or colleges to initiate and conduct research participation projects for a number of K-12 STEM teachers and/or community college faculty.
1More

RFA-CA-13-015: Cancer Detection, Diagnostic and Treatment Technologies for Global Healt... - 0 views

  •  
    This Funding Opportunity Announcement (FOA) is a new initiative to support the development of cancer-relevant technologies suitable for use in low- and middle-income countries (LMICs).  Specifically, the FOA solicits applications for projects to adapt, apply, and validate existing or emerging technologies into a new generation of user-friendly, low-cost devices or assays that are clinically comparable to currently used technologies for imaging, in vitro detection/diagnosis, or treatment of cancers in humans living in LMICs. Funds will be made available through the UH2/UH3 phased innovation cooperative agreement award mechanism.  Applicants should have a working assay or prototype (not necessarily already capable of cancer applications).  The initial 2-year (or shorter) UH2 exploratory phase will be a feasibility study to demonstrate technical functionality and clinical potential for use in LMIC settings by meeting specific performance milestones.  UH2 projects that have met their milestones will be administratively considered by NCI and prioritized for transition to the UH3 validation phase.  UH3 awards will support improvements and validations of the technologies in the LMIC settings.  The project period for the UH3 phase is up to 3 years.  Projects proposed in response to this FOA will require multidisciplinary efforts to succeed and therefore all applicant teams must include expertise in engineering/assay/treatment development, oncology, global healthcare delivery, and business development.  Investigators responding to this FOA must address both UH2 and UH3 phases.
« First ‹ Previous 41 - 60 of 156 Next › Last »
Showing 20 items per page