Skip to main content

Home/ OARS funding Engineering/ Group items matching "transportation" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
MiamiOH OARS

Nano-Biosensing | NSF - National Science Foundation - 0 views

  •  
    The Nano-Biosensing program is part of the Engineering Biology and Health cluster, which includes also 1) Cellular and Biochemical Engineering; 2) Engineering of Biomedical Systems; 3) Biophotonics; and 4) Disability and Rehabilitation Engineering. The Nano-Biosensing program supports fundamental engineering research on devices and methods for measurement and quantification of biological analytes. Proposals that incorporate emerging nanotechnology methods are especially encouraged. Areas of interest include: -Multi-purpose sensor platforms that exceed the performance of current state-of-the-art devices. -Novel transduction principles, mechanisms and sensor designs suitable for measurement in practical matrix and sample-preparation-free approaches. These include error-free detection of pathogens and toxins in food matrices, waterborne pathogens, parasites, toxins, biomarkers in body fluids, and others that improve human condition. -Nano-biosensors that enable measurement of biomolecular interactions in their native states, transmembrane transport, intracellular transport and reactions, and other biological phenomena. -Studies that examine intracellular measurements must include discussion on the significance of the measurement. 
MiamiOH OARS

Dear Colleague Letter: Collaborative Funding Opportunitites in the Division of Chemical Bioengineering, Environmental, and Transport Systems (CBET) (nsf17011) | NSF - National Science Foundation - 0 views

  •  
    The Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET) will consider proposals for collaborative funding with the Electric Power Research Institute (EPRI), the Water Environment & Reuse Foundation (WE&RF) [formerly the Water Environment Research Foundation], and/or the Water Research Foundation (WRF). For a proposal to be considered for collaborative funding, the proposal must be submitted to the appropriate NSF-CBET program as an unsolicited proposal during the CBET unsolicited submission window, which is October 1, 2016 - October 20, 2016. The same dates will apply in future years. Proposals will be reviewed as part of the unsolicited program(s). Proposals must follow guidelines for the CBET program to which they are submitted. Proposals will be evaluated according to the NSF criteria of intellectual merit and broader impacts.
  •  
    The Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET) will consider proposals for collaborative funding with the Electric Power Research Institute (EPRI), the Water Environment & Reuse Foundation (WE&RF) [formerly the Water Environment Research Foundation], and/or the Water Research Foundation (WRF). For a proposal to be considered for collaborative funding, the proposal must be submitted to the appropriate NSF-CBET program as an unsolicited proposal during the CBET unsolicited submission window, which is October 1, 2016 - October 20, 2016. The same dates will apply in future years. Proposals will be reviewed as part of the unsolicited program(s). Proposals must follow guidelines for the CBET program to which they are submitted. Proposals will be evaluated according to the NSF criteria of intellectual merit and broader impacts.
MiamiOH OARS

Process Separations - 0 views

  •  
    The Process Separations program is part of the Chemical Process Systems cluster, which includes also 1) Catalysis; 2) Process Systems, Reaction Engineering, and Molecular Thermodynamics; and 3) Energy for Sustainability. The Process Separations program supports research focused on novel methods and materials for separation processes, such as those central to the chemical, biochemical, bioprocessing, materials, energy, and pharmaceutical industries. A fundamental understanding of the interfacial, transport, and thermodynamic behavior of multiphase chemical systems as well as quantitative descriptions of processing characteristics in the process-oriented industries is critical for efficient resource management and effective environmental protection. The program encourages proposals that address long standing challenges and emerging research areas and technologies, have a high degree of interdisciplinary work coupled with the generation of fundamental knowledge, and the integration of education and research. Research topics of particular interest include fundamental molecular-level work on: Design of scalable mass separating agents and/or a mechanistic understanding of the interfacial thermodynamics and transport phenomena that relate to purification of gases, chemicals, or water
MiamiOH OARS

Biosensing - 0 views

  •  
    ) multiplex biosensing platforms that exceed the performance of current state-of-the-art devices; 2) novel transduction principles, mechanisms and sensor designs suitable for measurement in practical matrix and sample-preparation-free approaches, including error-free detection of pathogens and toxins in food matrices, waterborne pathogens, parasites, toxins, biomarkers in body fluids, neuron chemicals, and others that improve human condition; 3) biosensors that enable measurement of biomolecular interactions in their native states, transmembrane transport, intracellular transport and reactions, and other biological phenomena; 4) biosensing performance optimization for specific health applications such as point-of-care testing and personalized health monitoring; and 5) miniaturization of biosensors for lab-on-a-chip and cell/organ-on-a-chip applications to enable measurement of biological properties and functions of cell/tissues in vitro. The Biosensors Program does not encourage proposals addressing surface functionalization and modulation of bio-recognition molecules, development of basic chemical mechanisms for biosensing applications, circuit design for signal processing and amplification, computational modeling, and microfluidics for sample separation and filtration.
MiamiOH OARS

RFI: Pathways to Success for Next-Generation Supersized Wind Turbine Blades - 0 views

  •  
    Complete information on this RFI can be found on the EERE Exchange website - https://eere-exchange.energy.gov The Wind Energy Technologies Office (WETO) operates within the Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE). WETO's mission is to lead the nation's efforts to research and develop innovative technologies, lower the costs and accelerate the development of wind power. WETO is issuing a Request for Information (RFI) to gain public input regarding the key challenges associated with the manufacturing and deployment of larger next-generation blades for land-based wind turbines. Information sought under this RFI is intended to assist WETO in analyzing the costs and benefits of various pathways to achieve larger wind turbine blades, which are currently constrained by transportation logistics over existing road and rail infrastructure. Potential pathways include onsite blade manufacturing or assembly, transportation and logistics innovations, and hybrid approaches. The RFI further solicits input on specific areas where further federal research and development would best be applied to have a high impact on enabling supersized blades for the next generation of cost-competitive wind energy. Responses to this RFI must be submitted electronically to WindEnergyRFI@ee.doe.gov no later than 5:00pm (ET) on June 11, 2018
MiamiOH OARS

Combustion and Fire Systems - 0 views

  •  
    The Combustion and Fire Systemsprogram is part of the Transport Phenomena cluster, which also includes 1) the Fluid Dynamics program; 2) the Particulate and Multiphase Processes program; and 3) the Thermal Transport Processes program. The goal of theCombustion and Fire Systemsprogram is to advance energy conversion efficiency, improve energy security, enable cleaner environments, and enhance public safety. The program endeavors to createfundamental scientific knowledge that is needed for useful combustion applications and for mitigating the effects of fire.The program aims to identify and understand the controlling basic principles and to use that knowledge to create predictive capabilities for designing and optimizing practical combustion devices. Important outcomesfor this program include: broad-based tools - experimental, theoretical, andcomputational - that can be applied to a variety of problems in combustionand fire systems; science and technology for clean and efficient generation of power; discoveries that enable clean environments (for example, by reduction in combustion-generated pollutants); and enhanced public safety through research on fire growth, inhibition, and suppression.
MiamiOH OARS

Electrochemical Systems - 0 views

  •  
    The Electrochemical Systems program is part of the Chemical Process Systems cluster, which also includes: 1) the Catalysis program; 2) the Interfacial Engineering program; and 3) the Process Systems, Reaction Engineering, and Molecular Thermodynamics program. The goal of the Electrochemical Systems program is to support fundamental engineering research that will enable innovative processes involving electro- or photochemistry for the sustainable production of electricity, fuels, and chemicals. Processes for sustainable energy and chemical production must be scalable, environmentally benign, reduce greenhouse gas production, and utilize renewable resources. Research projects that stress fundamental understanding of phenomena that directly impact key barriers to improved system or component-level performance (for example, energy efficiency, product yield, process intensification) are encouraged. Processes for energy storage should address fundamental research barriers for the applications of renewable electricity storage or for transport propulsion. For projects concerning energy storage materials, proposals should involve hypotheses that involve device or component performance characteristics that are tied to fundamental understanding of transport, kinetics, or thermodynamics. Advanced chemistries are encouraged. Proposed research should be inspired by the need for economic and impactful conversion processes. All proposal project descriptions should address how the proposed work, if successful, will improve process realization and economic feasibility and compare the proposed work against current state of the art. Highly integrated multidisciplinary projects are encouraged.
MiamiOH OARS

Fluid Dynamics - 0 views

  •  
    The Fluid Dynamics program is part of the Transport Phenomena cluster, which also includes 1) the Combustion and Fire Systems program; 2) the Particulate and Multiphase Processes program; and 3) the Thermal Transport Processes program. The Fluid Dynamics program supports fundamental research toward gaining an understanding of the physics of various fluid dynamics phenomena. Proposed research should contribute to basic scientific understanding via experiments, theoretical developments, and computational discovery. Major areas of interest and activity in the program include: Turbulence and transition: High Reynolds number experiments; large eddy simulation; direct numerical simulation; transition to turbulence; 3-D boundary layers; separated flows; multi-phase turbulent flows; flow control and drag reduction. A new area of emphasis is high speed boundary layer transition and turbulence; the focus would be for flows at Mach numbers greater than 5 to understand cross-mode interactions leading to boundary layer transition and the ensuing developing and fully developed turbulent boundary layer flows. Combined experiments and simulations are encouraged. Bio-fluid physics: Bio-inspired flows; biological flows with emphasis on flow physics. Non-Newtonian fluid mechanics: Viscoelastic flows; solutions of macro-molecules. Microfluidics and nanofluidics: Micro-and nano-scale flow physics.
MiamiOH OARS

Youth Service and Conservation Corps Workforce Development - 0 views

  •  
    The FHWA hereby requests applications for assistance to result in the award of a new Cooperative Agreement, entitled, "Youth Service and Conservation Corps Workforce Development." The purpose of this proposed Cooperative Agreement (Agreement) is to assist the Recipient in encouraging States and regional transportation planning agencies to enter into contracts and cooperative agreements with qualified youth service or conservation corps to perform appropriate projects eligible under the Federal-aid highway program, and to expand youth workforce development opportunities while strengthening transportation career pathways. COST SHARING OR MATCHING: For this cooperative agreement, cost sharing or matching will NOT be required as the scope of work furthers the administration of the RTP, but cost sharing or matching is encouraged. If proposed, the Government will evaluate cost share as part of the cost/budget review. The degree of cost share and leveraging of non-Federal funds will be considered beneficial to the extent the cost share is considered feasible and demonstrates a furtherance of the goals of the program.
MiamiOH OARS

Nano-Biosensing | NSF - National Science Foundation - 0 views

  •  
    The Nano-Biosensing program is part of the Engineering Biology and Health cluster, which includes also 1) Cellular and Biochemical Engineering; 2) Engineering of Biomedical Systems; 3) Biophotonics; and 4) Disability and Rehabilitation Engineering. The Nano-Biosensing program supports fundamental engineering research on devices and methods for measurement and quantification of biological analytes. Proposals that incorporate emerging nanotechnology methods are especially encouraged. Areas of interest include: Multi-purpose sensor platforms that exceed the performance of current state-of-the-art devices. Novel transduction principles, mechanisms and sensor designs suitable for measurement in practical matrix and sample-preparation-free approaches. These include error-free detection of pathogens and toxins in food matrices, waterborne pathogens, parasites, toxins, biomarkers in body fluids, and others that improve human condition. Nano-biosensors that enable measurement of biomolecular interactions in their native states, transmembrane transport, intracellular transport and reactions, and other biological phenomena. Studies that examine intracellular measurements must include discussion on the significance of the measurement.
MiamiOH OARS

Enhancements of Climatic Inputs and Related Models for Pavement ME Using LTPP Climate Tool (MERRA-2) - 0 views

  •  
    The Federal Highway Administration (FHWA) and the American Association of State Highway Transportation Officials (AASHTO) have adopted its use and translated the variables into civil engineering applications, specifically pavement design. FHWA's Long Term Pavement Performance (LTPP) Climate Tool provides access to the MERRA-2 database and generates site-specific climate data in compatible formats for AASHTO Pavement ME Design (Pavement ME). AASHTO will soon use MERRA-2 climatic data for AASHTOWare applications. MERRA-2 data sets include accurate hourly solar radiation values based on measured cloud-covered fractions which can significantly improve the accuracy of predicted pavement temperatures. Studies reveal challenges in matching the predictions from the Enhanced Integrated Climatic Model (EICM) with field observations and pavement performance. Variations in measurement of climatic attributes have also been reported to Operating Weather Stations (OWS). MERRA-2 data provides opportunities for enhancements to the climatic parameters and climatic module calculations for pavement design using Pavement ME. It provides improved climatology, higher frequency outputs including hourly data updates, and additional locations beyond the United States. Available data categories include: temperature, precipitation, surface pressure, cloud cover, humidity, wind speed, and solar radiation. The objectives of this project are to (1) evaluate the impact of using NASA's Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) through the FHWA LTPP Climate Tool to improve the climatic inputs and related models for Pavement ME; (2) enhance and simplify climate input parameters for Pavement ME that can be implemented by Transportation agencies; and (3) develop climate-related models based on identified parameter enhancements
MiamiOH OARS

Particulate and Multiphase Processes | NSF - National Science Foundation - 0 views

  •  
    The goal of the Particulate and Multiphase Processes (PMP) program is to support fundamental research on physico-chemical phenomena that govern particulate and multiphase systems, including flow of suspensions, drops and bubbles, granular and granular-fluid flows, behavior of micro- and nanostructured fluids, and self-assembly/directed-assembly processes that involve particulates.  The program encourages transformative research to improve our basic understanding of particulate and multiphase processes with emphasis on research that demonstrates how particle-scale phenomena affect the behavior and dynamics of larger-scale systems.  Although proposed research should focus on fundamentals, a clear vision is required that anticipates how results could benefit important applications in advanced manufacturing, energy harvesting, transport in biological systems, biotechnology, or environmental sustainability.  Collaborative and interdisciplinary proposals are encouraged, especially those that involve a combination of experiment with theory or modeling.  Proposals whose main focus is on the synthesis of particles are not encouraged.
  •  
    The goal of the Particulate and Multiphase Processes (PMP) program is to support fundamental research on physico-chemical phenomena that govern particulate and multiphase systems, including flow of suspensions, drops and bubbles, granular and granular-fluid flows, behavior of micro- and nanostructured fluids, and self-assembly/directed-assembly processes that involve particulates.  The program encourages transformative research to improve our basic understanding of particulate and multiphase processes with emphasis on research that demonstrates how particle-scale phenomena affect the behavior and dynamics of larger-scale systems.  Although proposed research should focus on fundamentals, a clear vision is required that anticipates how results could benefit important applications in advanced manufacturing, energy harvesting, transport in biological systems, biotechnology, or environmental sustainability.  Collaborative and interdisciplinary proposals are encouraged, especially those that involve a combination of experiment with theory or modeling.  Proposals whose main focus is on the synthesis of particles are not encouraged.
MiamiOH OARS

Process Systems, Reaction Engineering and Molecular Thermodynamics | NSF - National Science Foundation - 0 views

  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding.
  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding.
MiamiOH OARS

Condensed Matter Physics | NSF - National Science Foundation - 0 views

  •  
    The Condensed Matter Physics program supports experimental, as well as combined experiment and theory projects investigating the fundamental physics behind phenomena exhibited by condensed matter systems.  Representative research areas in such systems include: 1) phenomena at the nano- to macro-scale including: transport, magnetic, and optical phenomena; classical and quantum phase transitions; localization; electronic, magnetic, and lattice structure or excitations; superconductivity; and nonlinear dynamics. 2) low-temperature physics: quantum fluids and solids; 1D & 2D electron systems. 3) soft condensed matter: partially ordered fluids, granular and colloid physics, and 4) understanding the fundamental physics of new states of matter as well as the physical behavior of condensed matter under extreme conditions e.g., low temperatures, high pressures, and high magnetic fields.  Questions of current interest that span these research areas are:  How and why do complex macroscopic phenomena emerge from simple interacting microscopic constituents?  What new physics occurs far from equilibrium and why?  What is the physics behind the behavior of matter confined to the nanoscale in one or more dimensions?  What is the physics of spin systems and quantum states of matter that could lead to their coherent manipulation and control?
  •  
    The Condensed Matter Physics program supports experimental, as well as combined experiment and theory projects investigating the fundamental physics behind phenomena exhibited by condensed matter systems.  Representative research areas in such systems include: 1) phenomena at the nano- to macro-scale including: transport, magnetic, and optical phenomena; classical and quantum phase transitions; localization; electronic, magnetic, and lattice structure or excitations; superconductivity; and nonlinear dynamics. 2) low-temperature physics: quantum fluids and solids; 1D & 2D electron systems. 3) soft condensed matter: partially ordered fluids, granular and colloid physics, and 4) understanding the fundamental physics of new states of matter as well as the physical behavior of condensed matter under extreme conditions e.g., low temperatures, high pressures, and high magnetic fields.  Questions of current interest that span these research areas are:  How and why do complex macroscopic phenomena emerge from simple interacting microscopic constituents?  What new physics occurs far from equilibrium and why?  What is the physics behind the behavior of matter confined to the nanoscale in one or more dimensions?  What is the physics of spin systems and quantum states of matter that could lead to their coherent manipulation and control?
MiamiOH OARS

Process Systems, Reaction Engineering and Molecular Thermodynamics | NSF - National Science Foundation - 0 views

  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding
  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding
MiamiOH OARS

Energy, Power, Control, and Networks | NSF - National Science Foundation - 0 views

  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control and Networks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills.
  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control and Networks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills.
MiamiOH OARS

Communications, Circuits, and Sensing-Systems | NSF - National Science Foundation - 0 views

  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) Program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative engineering research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS supports innovative research and integrated educational activities in micro- and nano- electromechanical systems (MEMS/NEMS), communications and sensing systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra- and inter- chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) Program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative engineering research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS supports innovative research and integrated educational activities in micro- and nano- electromechanical systems (MEMS/NEMS), communications and sensing systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra- and inter- chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
MiamiOH OARS

Environmental Convergence Opportunities in Chemical, Bioengineering, Environmental, and Transport Systems - 0 views

  •  
    Creating solutions to pressing environmental and sustainability challenges will require input and imaginative approaches from various fields, perspectives, and disciplines. The National Academies of Sciences, Engineering and Medicine (NASEM), in their report "Environmental Engineering for the 21st Century: Addressing Grand Challenges," identified five critical challenges we must address as a society: o Sustainably supply food, water, and energy o Curb climate change and adapt to its impacts o Design a future without pollution and waste o Create efficient, healthy, and resilient cities o Foster informed decisions and actions The report further states, "The challenges provide focal points for evolving environmental engineering education, research, and practice toward increased contributions and a greater impact. Implementing this new model will require modifications in educational curriculum and creative approaches to foster interdisciplinary research on complex social and environmental problems." This solicitation aims to address these grand challenges by supporting a collaborative research model that seamlessly integrates sustainability, environmental engineering, and process science and engineering. Accordingly, the Environmental Convergence Opportunities in Chemical, Bioengineering, Environmental, and Transport Systems (ECO-CBET) solicitation will support activities that confront vexing environmental engineering and sustainability problems by uncovering and incorporating fundamental knowledge to design new processes, materials, and devices from a systems-level perspective. Projects should be compelling and reflect sustained, coordinated efforts from interdisciplinary research teams.
MiamiOH OARS

nsf.gov - Funding - Civil Infrastructure Systems - US National Science Foundation (NSF) - 0 views

  •  
    The Civil Infrastructure Systems (CIS) program supports research leading to the engineering of infrastructure systems for resilience and sustainability without excluding other key performance issues.  Areas of interest include intra- and inter-physical, information and behavioral dependencies of infrastructure systems, infrastructure management, construction engineering, and transportation systems.  Special emphasis is on the design, construction, operation, and improvement of infrastructure networks with a focus on systems engineering and design, performance management, risk analysis, life-cycle analysis, modeling and simulation, behavioral and social considerations not excluding other methodological areas or the integration of methods. This program does not encourage research proposals primarily focused on structural engineering, materials or sensors that support infrastructure system design, extreme event modeling, hydrological engineering, and climate modeling, since they do not fall within the scope of the CIS program.
MiamiOH OARS

Grants.gov - Find Grant Opportunities - Opportunity Synopsis - 0 views

  •  
    The mission of ARPA-E is to identify and fund research to translate science into breakthrough energy technologies that are too risky for the private sector and that, if successfully developed, will create the foundation for entirely new industries. Successful projects will address at least one of ARPA-E?s two Mission Areas: 1. Enhance the economic and energy security of the United States through the development of energy technologies that result in: a. reductions of imports of energy from foreign sources; b. reductions of energy-related emissions, including greenhouse gases; and c. improvement in the energy efficiency of all economic sectors; and 2. Ensure that the United States maintains a technological lead in developing and deploying advanced energy technologies. This program seeks to support fund the development of bioconversion technologies that transform our ability to convert methane into liquid fuels. Of interest are biological routes to improve the rates and energy efficiencies of methane activation and subsequent fuel synthesis, as well as approaches to engineer high-productivity methane conversion processes. Within this program, three technical categories are considered: (1) high-efficiency biological methane activation, (2) high-efficiency biological synthesis of liquid fuels, and (3) process intensification approaches for biological methane conversion. The potential impacts of this FOA includes increasing the economic and energy security of the nation through production of low-cost, liquid transportation fuels with lower emissions than petroleum-based fuels.
‹ Previous 21 - 40 of 124 Next › Last »
Showing 20 items per page