Skip to main content

Home/ OARS funding Engineering/ Group items matching "and" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
MiamiOH OARS

Electronics, Photonics and Magnetic Devices - 0 views

  •  
    The Electronics, Photonics, and Magnetic Devices (EPMD) Program seeks to improve the fundamental understanding of devices and components based on the principles of micro- and nano-electronics, optics and photonics, optoelectronics, magnetics, electromechanics, electromagnetics, and related physical phenomena. The Electronics & Magnetic Devices component of EPMD enables discovery and innovation advancing the frontiers of nanoelectronics, spin electronics, molecular and organic electronics, bioelectronics, biomagnetics, non-silicon electronics, and flexible electronics. It also addresses advances in energy-efficient electronics, sensors, low-noise, power electronics, and mixed signal devices. The Optic & Photonic Devicescomponent of EPMD supports research and engineering efforts leading to significant advances in novel optical sources and photodetectors, optical communication devices, photonic integrated circuits, single-photon quantum devices, and nanophotonics. It also addresses novel optical imaging and sensing applications and solar cell photovoltaics. EPMD further supports topics in quantum devices and novel electromagnetic materials-based device solutions from DC to high-frequency, millimeter-wave and THz, monolithic integrated circuits built with them, and electromagnetic effects, components needed for communications, telemedicine, and other wireless applications. Wide bandgap semiconductor devices, device design, processing and characterization, as well as metamaterial and plasmonic based devices are of interest. Novel electronic, photonic and magnetic devices with organic, inorganic or hybrid materials on conformable or transparent substrates are also of interest, as are carbon-based and emerging 2D atomic-layered materials for electronic, photonic, magnetic, energy harvesting and other related device application areas. Interest also extends to novel ideas for next generation memory devices. The program supports cooperative efforts with the semiconduc
MiamiOH OARS

Hazard Mitigation and Structural Engineering - 0 views

  •  
    The Hazard Mitigation and Structural Engineering (HMSE) program supports fundamental research to mitigate impacts of natural and anthropogenic hazards on civil infrastructure and to advance the reliability, resiliency, and sustainability of buildings and other structures. Hazards considered within the program include earthquake, tsunami, hurricane, tornado and other loads, as well as explosive and impact loading. Resiliency of buildings and other structures include structural and non-structural systems that, in totality, permit continued occupation or operation in case of an impact by a hazard. Research is encouraged that integrates structural and architectural engineering advances with discoveries in other science and engineering fields, such as earth and atmospheric sciences, material science, mechanics of materials, sensor technology, high performance computational modeling and simulation, dynamic system and control, and economics. The program seeks to fund transformative and cost-effective innovations for hazard mitigation of both new and rehabilitated buildings and other structures. Research in structural and architectural engineering is encouraged that extends beyond mature or current construction materials into investigations of smart and sustainable materials and technologies, and considers the structures in their entirety. In addition, the program funds research on structural health monitoring that goes beyond data acquisition to include the holistic system, integrating condition assessment and decision making tools to improve structural performance
MiamiOH OARS

Energy, Power, Control, and Networks - 0 views

  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control andNetworks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills. Proposals for the EPCN program may involve collaborative research to capture the breadth of
MiamiOH OARS

Research on the Science and Technology Enterprise: Statistics and Surveys - 0 views

  •  
    The National Center for Science and Engineering Statistics (NCSES) of the National Science Foundation (NSF) is one of the thirteen principal federal statistical agencies within the United States. It is responsible for the collection, acquisition, analysis, reporting and dissemination of objective, statistical data related to the science and engineering enterprise in the United States and other nations that is relevant and useful to practitioners, researchers, policymakers and the public. NCSES uses this information to prepare a number of statistical data reports as well as analytical reports including the National Science Board's biennial report, Science and Engineering (S&E) Indicators, and Women, Minorities and Persons with Disabilities in Science and Engineering. The Center would like to enhance its efforts to support analytic and methodological research in support of its surveys, and to engage in the education and training of researchers in the use of large-scale nationally representative datasets. NCSES welcomes efforts by the research community to use NCSES data for research on the science and technology enterprise, to develop improved survey methodologies for NCSES surveys, to create and improve indicators of S&T activities and resources, and strengthen methodologies to analyze and disseminate S&T statistical data. To that end, NCSES invites proposals for individual or multi-investigator research projects, doctoral dissertation improvement awards, workshops, experimental research, survey research and data collection and dissemination projects under its program for Research on the Science and Technology Enterprise: Statistics and Surveys.
MiamiOH OARS

NSPIRES - Solicitations Summary - 0 views

  •  
    For this opportunity, the objective of O2R is broadly defined as the joint pursuit of improvements of operational capabilities and advancements in related fundamental research. NASA's role is to implement and support a national research program to understand the Sun and its interactions with Earth and the Solar System to advance space weather modeling and prediction capabilities applicable to space weather forecasting; develop and operate space-weather-related research missions, instrument capabilities, and models; and support the transition of space weather models and technology from research to operations and from operations to research. Proposers interested in this program element are encouraged to see the overview of the Heliophysics Research Program in B.1 of this ROSES NRA. NOAA's role is to provide timely and accurate operational space weather forecasts, watches, warnings, alerts, and real-time space weather monitoring for the government, civilian, and commercial sectors, exclusive of the responsibilities of the Secretary of Defense; and to ensure the continuous improvement of operational space weather services, utilizing partnerships, as appropriate, with the research community, including academia and the private sector, and relevant agencies to develop, validate, test, and transition space weather observation platforms and models from research to operations and from operations to research. For this opportunity, NASA and NOAA have identified the following focus area for research and development to advance specification and/or forecast models of energetic particles and plasma in Earth's magnetosphere:
MiamiOH OARS

nsf.gov - Funding - Research Experiences for Teachers (RET) in Engineering and Computer Science - US National Science Foundation (NSF) - 0 views

  •  
    The Directorate for Engineering (ENG) and the Directorate for Computer and Information Science and Engineering (CISE),  Research Experiences for Teachers (RET) in Engineering and Computer Science program supports the active involvement of K-12 science, technology, engineering, computer and information science, and mathematics (STEM) teachers and community college faculty in engineering and computer science research in order to bring knowledge of engineering, computer science, and technological innovation into their classrooms. The goal is to help build long-term collaborative partnerships between K-12 STEM teachers, community college faculty, and the NSF university research community by involving the teachers and community college faculty in engineering and computer science research and helping them translate their research experiences and new knowledge into classroom activities.  Partnerships with inner city schools or other high needs schools are especially encouraged, as is participation by underrepresented minorities, women, and persons with disabilities. This announcement features two mechanisms for support of in-service and pre-service K-12 STEM teachers and community college faculty: RET supplements to ongoing ENG or CISE awards and new RET Site awards. RET supplements may be included in proposals for new or renewed NSF Directorate for Engineering (ENG) or CISE grants or as supplements to ongoing NSF ENG or CISE funded projects. RET in Engineering and Computer Science Sites are based on independent proposals from engineering or computer and information science departments, schools or colleges to initiate and conduct research participation projects for a number of K-12 STEM teachers and/or community college faculty.
MiamiOH OARS

Energy, Power, and Adaptive Systems - 0 views

  •  
    The Energy, Power, and Adaptive Systems (EPAS) program invests in the design and analysis of intelligent and adaptive engineering networks, including sensing, imaging, controls, and computational technologies for a variety of application domains. EPAS places emphasis on electric power networks and grids, including generation, transmission and integration of renewable, sustainable and distributed energy systems; high power electronics and drives; and understanding of associated regulatory and economic structures. Topics of interest include alternate energy sources, the Smart Grid, and interdependencies of critical infrastructure in power and communications. The program also places emphasis on energy scavenging and alternative energy technologies, including solar cells, ocean waves, wind, and low-head hydro. In addition, the program supports innovative test beds, and laboratory and curriculum development to integrate research and education.  EPAS invests in adaptive dynamic programming, brain-like networked architectures performing real-time learning, neuromorphic engineering, telerobotics, and systems theory. The program supports distributed control of multi-agent systems with embedded computation for sensor and adaptive networks. EPAS provides additional emphasis on emerging areas, such as quantum systems engineering, quantum and molecular modeling and simulation of devices and systems.
MiamiOH OARS

Communications, Circuits, and Sensing-Systems - 0 views

  •  
    Description: The Communications, Circuits, and Sensing-Systems (CCSS) Program supports innovative research in circuit and system hardware and signal processing techniques. CCSS also supports system and network architectures for communications and sensing to enable the next-generation cyber-physical systems (CPS) that leverage computation, communication, and sensing integrated with physical domains. CCSS invests in micro- and nano-electromechanical systems (MEMS/NEMS), physical, chemical, and biological sensing systems, neurotechnologies, and communication & sensing circuits and systems. The goal is to create new complex and hybrid systems ranging from nano- to macro-scale with innovative engineering principles and solutions for a variety of applications including but not limited to healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS encourages research proposals based on emerging technologies and applications for communications and sensing such as high-speed communications of terabits per second and beyond, sensing and imaging covering microwave to terahertz frequencies, personalized health monitoring and assistance, secured wireless connectivity and sensing for the Internet of Things, and dynamic-data-enabled autonomous systems through real-time sensing and learning.
MiamiOH OARS

EarthCube - 0 views

  •  
    EarthCube is a community-driven activity sponsored through a partnership between the NSF Directorate for Geosciences (GEO)and the Directorate for Computer & Information Science & Engineering's (CISE) Office of Advanced Cyberinfrastructure (OAC)to transformresearch inthe academic geosciences community. EarthCube aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system. Achieving EarthCube will requirea long-term dialog between NSF and the interested scientific communities to develop cyberinfrastructure that is thoughtfully and systematically built to meet the current and future requirements of geoscientists. New avenues will be supported to gather community requirements and priorities for the elements of EarthCube, and to capture the best technologies to meet these current and future needs. The EarthCube portfolio will consist of interconnected projects and activities that engage the geosciences, cyberinfrastructure, computer science, and associated communities. The portfolio of activities and funding opportunities will evolve over time depending on the status of the EarthCube effort and the scientific and cultural needs of the geosciences community. This umbrella solicitation for EarthCube allows funding opportunities to be flexible and responsive to emerging needs and collaborative processes. The EarthCube vision and goals do not change over time, and this section of the solicitation will remain constant. Funding opportunities to develop elements of the EarthCube environment will be described in Amendments to this solicitation. Amendments will appear in the Program Description section of the solicitation and will include details on the parameters, scope, conditions, and requirements of the proposal call. Researchers who receive alerts related to solicitation releases will receive notification when the EarthCube solicitati
MiamiOH OARS

Dear Colleague Letter: FY 2017 Innovations at the Nexus of Food, Energy and Water Systems (INFEWS) Funding Opportunity on Nitrogen, Phosphorus, and Water (nsf17013) | NSF - National Science Foundation - 0 views

  •  
    In 2010, NSF established the Science, Engineering, and Education for Sustainability (SEES)1 investment area to lay the research foundation for decision capabilities and technologies aimed at mitigating and adapting to environmental changes that threaten sustainability. Some SEES investments advanced a systems-based approach to understanding, predicting, and reacting to stress upon, and changes in, the linked natural, social, and built environments. In this context, the importance of understanding the interconnected and interdependent systems involving food, energy, and water (FEW) has emerged. The NSF aims to specifically focus on advancing knowledge of the nitrogen and phosphorus cycles; the production and use of fertilizers for food production; and the detection, separation, and reclamation/recycling of nitrogen- and phosphorus-containing species in and from complex aqueous environments.
  •  
    In 2010, NSF established the Science, Engineering, and Education for Sustainability (SEES)1 investment area to lay the research foundation for decision capabilities and technologies aimed at mitigating and adapting to environmental changes that threaten sustainability. Some SEES investments advanced a systems-based approach to understanding, predicting, and reacting to stress upon, and changes in, the linked natural, social, and built environments. In this context, the importance of understanding the interconnected and interdependent systems involving food, energy, and water (FEW) has emerged. The NSF aims to specifically focus on advancing knowledge of the nitrogen and phosphorus cycles; the production and use of fertilizers for food production; and the detection, separation, and reclamation/recycling of nitrogen- and phosphorus-containing species in and from complex aqueous environments.
MiamiOH OARS

Integrated University Program (IUP) Nuclear Engineering Consortium for Nonproliferation - 0 views

  •  
    Section 313 of the Omnibus Appropriations Act of 2009 (H.R. 1105, P.L. 111-8) created the Integrated University Program (IUP). DNN R&D is one of the three participants in this program and is continuing a nuclear science and engineering program to support multi-year research projects critical to maintaining the discipline of nuclear science and engineering. Throughout this document the term, DOE National Laboratories, is used to collectively refer to DOE and NNSA National Laboratories, Sites, and Complexes. For DNN R&D, the role of Institutions of Higher Education (IHE; as defined in Section III.A. below) is to innovate, develop, and prove some of the most challenging basic aspects of new technology and methods in coordination with the DOE National Laboratories which can in turn fulfill their unique role to perform mission-specific research and development that improves on capabilities until they are either adopted by operational enterprises or transitioned into private industry for commercialization. Transparently and effectively linking the roles of these IHE and DOE National Laboratory represents the core of how DNN R&D proposes to meet its objectives. The intent of this Funding Opportunity Announcement (FOA) is to award ONE or TWO five-year cooperative agreement(s) to a consortium consisting of accredited IHE's to allow them to receive and administer funds for student and faculty research, fellowships, and scholarship funding awarded by DOE/NNSA, DNN R&D. The cooperative agreement will be awarded to a consortium of IHEs which will include the participation of DOE National Laboratories as a consortium-member(s). Individual consortium-member IHEs shall make specific contributions and shall receive specified portions of the funding. The consortium may include student and research fellows and must have a long-term objective of building expertise in nuclear science and engineering. Research results should be incorporated readily into IHE curricula. Students, faculty
MiamiOH OARS

IRIS Research Awards | IRIS - 0 views

  •  
    The Institute for Research on Innovation and Science is accepting applications for its 2018 IRIS Awards, an annual program that supports researchers who use IRIS data to address questions about the social and economic returns of investments in research. Through the program, IRIS seeks to enable fundamental research on the results of public and private investments that support discovery, innovation, and education on the campuses of U.S. universities. Up to $15,000 for dissertations awards and up to $30,000 for early career and established researcher awards will be awarded to the recipient's institution. Funds can be used for personnel (e.g., research assistance, salaries, or stipend if recipient is a student), equipment, supplies, travel (may include travel mandated by the award), and other expenses (e.g., professional development and training). Awards may include 15 percent overhead or indirect costs to be paid as a part of the award total. Proposals must emphasize the use of IRIS data in projects that address open issues in the study of science and technology and science policy. Topics of particular interest include but are not limited to new methods to estimate social and economic return on investment for funding from various sources (federal, philanthropic, industrial, and institutional); the relationship between research training, career outcomes, and the downstream productivity of employers; the relationship between different funding sources and mechanisms and the structure and outcomes of collaboration within and across campuses; the distinctive contribution university research makes to regional economic development and resilience; and the effects different funding sources and mechanisms have on research teams and the productivity and efficiency of the academic research enterprise as a whole
MiamiOH OARS

View Opportunity | GRANTS.GOV - 0 views

  •  
    The Understanding the Rules of Life: Microbiome Theory and Mechanisms (URoL:MTM) program is an integrative collaborationacross Directorates and Offices within the National Science Foundation. The objective of URoL:MTM is to understand and establish the theory and mechanisms that govern the structure and function of microbiomes, a collection of microbes in a specific habitat/environment. This may include but is not limited to host-associated microbiomes, such as those with humans and other organisms, where i) the microbiome impacts host physiology, behavior, development, and fitness; ii) the host influences the metabolic activity, dynamics and evolution of the microbiome, and iii) the environment (biological, chemical, physical, and social) influences and is influenced by both the host and the microbiome. Recent progress has transformed our ability to identify and catalogue the microbes present in a given environment and measure multiple aspects ofbiological, chemical, physical, and social environments that affect the interactions among the members of the microbiome, the host, and/or habitat. Much descriptive and correlative work has been performed on many microbiome systems, particularly those in the human, soil, aquatic, and built environments. This research has resulted in new hypotheses about the microbiome's contributions to potential system function or dysfunction. The current challenge is to integrate the wide range of accumulated data and information and build on them to develop new causal/mechanistic models or theories of interactions and interdependencies across scales and systems.
MiamiOH OARS

Electronics, Photonics and Magnetic Devices | NSF - National Science Foundation - 0 views

  •  
    The Electronics, Photonics, and Magnetic Devices (EPMD) Program seeks to improve the fundamental understanding of devices and components based on the principles of micro- and nano-electronics, optics and photonics, optoelectronics, magnetics, electromechanics, electromagnetics, and related physical phenomena. The Electronics & Magnetic Devices component of EPMD enables discovery and innovation advancing the frontiers of nanoelectronics, spin electronics, molecular and organic electronics, bioelectronics, biomagnetics, non-silicon electronics, and flexible electronics. It also addresses advances in energy-efficient electronics, sensors, low-noise, power electronics, and mixed signal devices. The Optic & Photonic Devices component of EPMD supports research and engineering efforts leading to significant advances in novel optical sources and photodetectors, optical communication devices, photonic integrated circuits, single-photon quantum devices, and nanophotonics. It also addresses novel optical imaging and sensing applications and solar cell photovoltaics.
  •  
    The Electronics, Photonics, and Magnetic Devices (EPMD) Program seeks to improve the fundamental understanding of devices and components based on the principles of micro- and nano-electronics, optics and photonics, optoelectronics, magnetics, electromechanics, electromagnetics, and related physical phenomena. The Electronics & Magnetic Devices component of EPMD enables discovery and innovation advancing the frontiers of nanoelectronics, spin electronics, molecular and organic electronics, bioelectronics, biomagnetics, non-silicon electronics, and flexible electronics. It also addresses advances in energy-efficient electronics, sensors, low-noise, power electronics, and mixed signal devices. The Optic & Photonic Devices component of EPMD supports research and engineering efforts leading to significant advances in novel optical sources and photodetectors, optical communication devices, photonic integrated circuits, single-photon quantum devices, and nanophotonics. It also addresses novel optical imaging and sensing applications and solar cell photovoltaics.
MiamiOH OARS

Industrial Research and Development Center Program (IRDCP) - 0 views

  •  
    nationally designated and highly visible corporate, non-profit, and federal research and development centers or laboratory facilities (hereafter referred to as Center(s)) to Ohio. The Industrial Research and Development Center Program will achieve this goal by enhancing and supplementing Ohio organizations' proposals for such Centers by providing funding that serves as cost share or matching dollars, thereby improving the competitiveness of the proposal and enhancing the potential for a Center being located in Ohio.   The specific goals and objectives of the Industrial Research and Development Center Program are to: ·         Secure new-to-Ohio research and development funding and facilities with "center" designations by their primary sponsor; ·         Increase the reputation and visibility of Ohio within selected fields of research and development that are aligned with Ohio Third Frontier technology focus areas; ·         Provide support for Centers that will conduct applied research, commercialize new technologies and innovations, support Ohio companies and their efforts to launch new, innovative products, and address competitiveness issues of industries that are strategically significant to Ohio. ·         Attract exceptional senior talent from industry and outside Ohio with demonstrated entrepreneurial qualities and attributes that integrates and aligns well to Center-driven, and their own, commercial outcomes and extended talent development; and, ·         Create new, high-tech jobs.
MiamiOH OARS

Shell Foundation Grant | Instrumentl - 0 views

  •  
    Shell is a leading oil and gas producer in the deepwater Gulf of Mexico, a recognized pioneer in oil and gas exploration and production technology and one of America's leading oil and natural gas producers, gasoline and natural gas marketers and petrochemical manufacturers. Focus on energy awareness with special publics, increasing interest in technical careers among students and professional development in science and math among educators. We support K-12 programs that boost math and science skills, as well as university programs that aid engineering and geoscience students and departments. Shell funds projects at vocational and technical schools where chemical and refinery operators and technicians are trained. We are especially interested in supporting educational outreach in math, science and technology to women/minority students and academic institutions with ethnically diverse enrollments. Focus on biodiversity initiatives with support to programs that restore critical ecosystems, address water, air quality research, preserve wetlands and sponsor wetlands initiatives. As part of our commitment to environmental stewardship, we support projects that restore and protect critical ecosystems. In addition to restoration and preservation efforts, we fund research projects for threatened wildlife and/or habitats.
MiamiOH OARS

Computational and Data-Enabled Science and Engineering in Mathematical and Statistical Sciences | NSF - National Science Foundation - 0 views

  •  
    The CDS&E-MSS program accepts proposals that confront and embrace the host of mathematical and statistical challenges presented to the scientific and engineering communities by the ever-expanding role of computational modeling and simulation on the one hand, and the explosion in production of digital and observational data on the other. The goal of the program is to promote the creation and development of the next generation of mathematical and statistical theories and tools that will be essential for addressing such issues. To this end, the program will support fundamental research in mathematics and statistics whose primary emphasis will be on meeting the aforementioned computational and data-related challenges. This program is part of the wider Computational and Data-enabled Science and Engineering (CDS&E) enterprise in NSF that seeks to address this emerging discipline
  •  
    The CDS&E-MSS program accepts proposals that confront and embrace the host of mathematical and statistical challenges presented to the scientific and engineering communities by the ever-expanding role of computational modeling and simulation on the one hand, and the explosion in production of digital and observational data on the other. The goal of the program is to promote the creation and development of the next generation of mathematical and statistical theories and tools that will be essential for addressing such issues. To this end, the program will support fundamental research in mathematics and statistics whose primary emphasis will be on meeting the aforementioned computational and data-related challenges. This program is part of the wider Computational and Data-enabled Science and Engineering (CDS&E) enterprise in NSF that seeks to address this emerging discipline
MiamiOH OARS

Signals in the Soil - 0 views

  •  
    The National Science Foundation (NSF) Directorates for Engineering (ENG) and Geosciences (GEO), the Divisions of Integrative Organismal Systems (IOS) and Environmental Biology (DEB), in the Directorate for Biological Sciences (BIO), the Division of Computer and Network Systems in the Directorate Computer and Information Science and Engineering (CISE/CNS), and the Division of Chemistry (CHE) in the Directorate for Mathematical and Physical Sciences, in collaboration with the US Department of Agriculture National Institute of Food and Agriculture (USDA NIFA) encourage convergent research that transforms existing capabilities in understanding dynamic soil processes, including soil formation, through advances in sensor systems and modeling. The Signals in the Soil (SitS) program fosters collaboration among the two partner agencies and the researchers they support by combining resources and funding for the most innovative and high-impact projects that address their respective missions. To make transformative advances in our understanding of soils, multiple disciplines must converge to produce environmentally-benign novel sensing systems with multiple modalities that can adapt to different environments and collect and transmit data for a wide range of biological, chemical, and physical parameters. Effective integration of sensor data will be key for achieving a better understanding of signaling interactions among plants, animals, microbes, the soil matrix, and aqueous and gaseous components. New sensor networks have the potential to inform models in novel ways, to radically change how data is obtained from various natural and managed (both urban and rural) ecosystems, and to better inform the communities that directly rely on soils for sustenance and livelihood.
MiamiOH OARS

Signals in the Soil (SitS) (nsf20548) | NSF - National Science Foundation - 0 views

  •  
    The National Science Foundation (NSF) Directorates for Engineering (ENG) and Geosciences (GEO), the Divisions of Integrative Organismal Systems (IOS) and Environmental Biology (DEB), in the Directorate for Biological Sciences (BIO), the Division of Computer and Network Systems in the Directorate Computer and Information Science and Engineering (CISE/CNS), and the Division of Chemistry (CHE) in the Directorate for Mathematical and Physical Sciences, in collaboration with the US Department of Agriculture National Institute of Food and Agriculture (USDA NIFA) encourage convergent research that transforms existing capabilities in understanding dynamic soil processes, including soil formation, through advances in sensor systems and modeling. The Signals in the Soil (SitS) program fosters collaboration among the two partner agencies and the researchers they support by combining resources and funding for the most innovative and high-impact projects that address their respective missions. To make transformative advances in our understanding of soils, multiple disciplines must converge to produce environmentally-benign novel sensing systems with multiple modalities that can adapt to different environments and collect and transmit data for a wide range of biological, chemical, and physical parameters. Effective integration of sensor data will be key for achieving a better understanding of signaling interactions among plants, animals, microbes, the soil matrix, and aqueous and gaseous components. New sensor networks have the potential to inform models in novel ways, to radically change how data is obtained from various natural and managed (both urban and rural) ecosystems, and to better inform the communities that directly rely on soils for sustenance and livelihood.
MiamiOH OARS

Methods and Technologies for Personalized Learning, Modeling and Assessment - 0 views

  •  
    The Air Force Research Laboratories and 711th Human Performance Wing are soliciting white papers (and later technical and cost proposals) on the following research effort. This is an open ended BAA. The closing date for submission of White Papers is 17 Nov 2019.This program deals with science and technology development, experimentation, and demonstration in the areas of improving and personalizing individual, team, and larger group instructional training methods for airmen. The approaches relate to competency definition and requirements analysis, training and rehearsal strategies, and models and environments that support learning and proficiency achievement and sustainment during non-practice of under novel contexts. This effort focuses on measuring, diagnosing, and modeling airman expertise and performance, rapid development of models of airman cognition and specifying and validating, both empirically and practically, new classes of synthetic, computer-generated agents and teammates.An Industry Day was held in November 2014. Presentation materials from the Industry Day and Q&A's are attached. If you would like a list of Industry Day attendees, send an email request to helen.williams@us.af.mil
‹ Previous 21 - 40 of 1942 Next › Last »
Showing 20 items per page