Skip to main content

Home/ OARS funding Engineering/ Contents contributed and discussions participated by MiamiOH OARS

Contents contributed and discussions participated by MiamiOH OARS

MiamiOH OARS

Water Tech Showcase - Confluence - 0 views

  •  
    The Confluence Tech Showcase will connect vendors, manufacturers, developers, entrepreneurs, technologists, engineers, and students to our regional utilities to share solutions to the top challenges that have been identified by the utilities. This call for abstracts is addressed to vendors, manufacturers, developers, researchers, technologists, engineers, utilities, entrepreneurs, students and anyone with a solution to the challenges outlined by the Regional Utility Network.   Topics: (Sessions have been categorized into the following tracks: financial innovations, operational efficiencies, business drivers, resiliency opportunities, regulatory concerns, and water sector challenges for utilities within the water cycle (stormwater, drinking water, wastewater).  Abstracts should provide a technology, process, and/or case study of solutions related to these topics, and clearly indicate their value proposition and unique aspects in addressing the problem.  )
MiamiOH OARS

Biosystems Design to Enable Next-Generation Biofuels and Bioproducts - 0 views

  •  
    Biological and Environmental Research (BER) of the Office of Science (SC), U.S. Department of Energy (DOE) hereby announces its interest in receiving applications for research of interest to the Genomic Science Program (http://genomicscience.energy.gov) in the following research areas: a) Integrating large-scale systems biology data to model, design, and engineer microbial systems for the production of biofuels and bioproducts: Interdisciplinary approaches to develop innovative, high-throughput modeling, genome-wide design and editing, and engineering technologies for a broad range of microbes relevant for the production of biofuels and bioproducts from biomass. b) Plant systems design for bioenergy: To develop novel technologies for genome-scale engineering to re-design bioenergy crops that can grow in marginal environments while producing high yield of biomass that can be easily converted to biofuels and bioproducts. Applications should include strategies to address biocontainment, minimizing risks of potential release of engineered organisms into the environment or other unintended outcomes.
  •  
    Biological and Environmental Research (BER) of the Office of Science (SC), U.S. Department of Energy (DOE) hereby announces its interest in receiving applications for research of interest to the Genomic Science Program (http://genomicscience.energy.gov) in the following research areas: a) Integrating large-scale systems biology data to model, design, and engineer microbial systems for the production of biofuels and bioproducts: Interdisciplinary approaches to develop innovative, high-throughput modeling, genome-wide design and editing, and engineering technologies for a broad range of microbes relevant for the production of biofuels and bioproducts from biomass. b) Plant systems design for bioenergy: To develop novel technologies for genome-scale engineering to re-design bioenergy crops that can grow in marginal environments while producing high yield of biomass that can be easily converted to biofuels and bioproducts. Applications should include strategies to address biocontainment, minimizing risks of potential release of engineered organisms into the environment or other unintended outcomes.
MiamiOH OARS

Microphysiological Systems (MPS) for Disease Modeling and Efficacy Testing (UG3/UH3) - 0 views

  •  
    This FOA invites applications for the Microphysiological Systems (MPS) for Disease Modeling and Efficacy Testing Program to develop highly reproducible and translatable in vitro models for preclinical efficacy studies through discovery and validation of translatable biomarkers, development of standardized methods for preclinical efficacy testing and definitive efficacy testing of candidate therapeutics using best practices and rigorous study design. An essential feature will be a multidisciplinary approach that brings together experts in bioengineering, microfluidics, material science, "omic" sciences, computational biology, disease biology, pathology, electrophysiology, pharmacology, biostatistics and clinical science.
  •  
    This FOA invites applications for the Microphysiological Systems (MPS) for Disease Modeling and Efficacy Testing Program to develop highly reproducible and translatable in vitro models for preclinical efficacy studies through discovery and validation of translatable biomarkers, development of standardized methods for preclinical efficacy testing and definitive efficacy testing of candidate therapeutics using best practices and rigorous study design. An essential feature will be a multidisciplinary approach that brings together experts in bioengineering, microfluidics, material science, "omic" sciences, computational biology, disease biology, pathology, electrophysiology, pharmacology, biostatistics and clinical science.
MiamiOH OARS

Macromolecular, Supramolecular and Nanochemistry | NSF - National Science Foundation - 0 views

  •  
    The Macromolecular, Supramolecular and Nanochemistry (MSN) Program focuses on basic research that addresses fundamental questions regarding the chemistry of macromolecular, supramolecular and nanoscopic species and other organized structures and that advances chemistry knowledge in these areas.  Research of interest to this program will explore novel chemistry concepts in the following topics: (1) The development of novel synthetic approaches to clusters, nanoparticles, polymers, and supramolecular architectures; innovative surface functionalization methodologies; surface monolayer chemistry; and template-directed synthesis.  (2) The study of molecular-scale interactions that give rise to macromolecular, supramolecular or nanoparticulate self-assembly into discrete structures; and the study of chemical forces and dynamics that are responsible for spatial organization in discrete organic, inorganic, or hybrid systems (excluding extended solids).  (3) Investigations that utilize advanced experimental or computational methods to understand or to predict the chemical structure, unique chemical and physicochemical properties, and chemical reactivities that result from the organized or nanoscopic structures.  Research in which theory advances experiment and experiment advances theory synergistically is of special interest.
  •  
    The Macromolecular, Supramolecular and Nanochemistry (MSN) Program focuses on basic research that addresses fundamental questions regarding the chemistry of macromolecular, supramolecular and nanoscopic species and other organized structures and that advances chemistry knowledge in these areas.  Research of interest to this program will explore novel chemistry concepts in the following topics: (1) The development of novel synthetic approaches to clusters, nanoparticles, polymers, and supramolecular architectures; innovative surface functionalization methodologies; surface monolayer chemistry; and template-directed synthesis.  (2) The study of molecular-scale interactions that give rise to macromolecular, supramolecular or nanoparticulate self-assembly into discrete structures; and the study of chemical forces and dynamics that are responsible for spatial organization in discrete organic, inorganic, or hybrid systems (excluding extended solids).  (3) Investigations that utilize advanced experimental or computational methods to understand or to predict the chemical structure, unique chemical and physicochemical properties, and chemical reactivities that result from the organized or nanoscopic structures.  Research in which theory advances experiment and experiment advances theory synergistically is of special interest.
MiamiOH OARS

Energy, Power, Control, and Networks | NSF - National Science Foundation - 0 views

  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control and Networks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills.
  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control and Networks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills.
MiamiOH OARS

Electronics, Photonics and Magnetic Devices | NSF - National Science Foundation - 0 views

  •  
    The Electronics, Photonics, and Magnetic Devices (EPMD) Program seeks to improve the fundamental understanding of devices and components based on the principles of micro- and nano-electronics, optics and photonics, optoelectronics, magnetics, electromechanics, electromagnetics, and related physical phenomena. The Electronics & Magnetic Devices component of EPMD enables discovery and innovation advancing the frontiers of nanoelectronics, spin electronics, molecular and organic electronics, bioelectronics, biomagnetics, non-silicon electronics, and flexible electronics. It also addresses advances in energy-efficient electronics, sensors, low-noise, power electronics, and mixed signal devices. The Optic & Photonic Devices component of EPMD supports research and engineering efforts leading to significant advances in novel optical sources and photodetectors, optical communication devices, photonic integrated circuits, single-photon quantum devices, and nanophotonics. It also addresses novel optical imaging and sensing applications and solar cell photovoltaics.
  •  
    The Electronics, Photonics, and Magnetic Devices (EPMD) Program seeks to improve the fundamental understanding of devices and components based on the principles of micro- and nano-electronics, optics and photonics, optoelectronics, magnetics, electromechanics, electromagnetics, and related physical phenomena. The Electronics & Magnetic Devices component of EPMD enables discovery and innovation advancing the frontiers of nanoelectronics, spin electronics, molecular and organic electronics, bioelectronics, biomagnetics, non-silicon electronics, and flexible electronics. It also addresses advances in energy-efficient electronics, sensors, low-noise, power electronics, and mixed signal devices. The Optic & Photonic Devices component of EPMD supports research and engineering efforts leading to significant advances in novel optical sources and photodetectors, optical communication devices, photonic integrated circuits, single-photon quantum devices, and nanophotonics. It also addresses novel optical imaging and sensing applications and solar cell photovoltaics.
MiamiOH OARS

Process Systems, Reaction Engineering and Molecular Thermodynamics | NSF - National Sci... - 0 views

  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding
  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding
MiamiOH OARS

General & Age-Related Disabilities Engineering (GARDE) | NSF - National Science Foundation - 0 views

  •  
    The General & Age Related Disabilities Engineering (GARDE) program supports fundamental engineering research that will lead to the development of new technologies, devices, or software that improve the quality of life of persons with disabilities. Research may be supported that is directed toward the characterization, restoration, and/or substitution of human functional ability or cognition, or to the interaction of persons with disabilities and their environment. Areas of particular interest are disability-related research in neuroengineering and rehabilitation robotics. Emphasis is placed on significant advancement of fundamental engineering knowledge that facilitates transformative outcomes. We discourage applications that propose incremental improvements. Applicants are encouraged to contact the Program Director prior to submitting a proposal.
  •  
    The General & Age Related Disabilities Engineering (GARDE) program supports fundamental engineering research that will lead to the development of new technologies, devices, or software that improve the quality of life of persons with disabilities. Research may be supported that is directed toward the characterization, restoration, and/or substitution of human functional ability or cognition, or to the interaction of persons with disabilities and their environment. Areas of particular interest are disability-related research in neuroengineering and rehabilitation robotics. Emphasis is placed on significant advancement of fundamental engineering knowledge that facilitates transformative outcomes. We discourage applications that propose incremental improvements. Applicants are encouraged to contact the Program Director prior to submitting a proposal. 
MiamiOH OARS

Environmental Engineering | NSF - National Science Foundation - 0 views

  •  
    The goal of the Environmental Engineering program is to support transformative research which applies scientific and engineering principles to avoid or minimize solid, liquid, and gaseous discharges, resulting from human activities on land, inland and coastal waters, and air, while promoting resource and energy conservation and recovery.  The program also fosters cutting-edge scientific research for identifying, evaluating, and monitoring the waste assimilative capacity of the natural environment and for removing or reducing contaminants from polluted air, water, and soils.
  •  
    The goal of the Environmental Engineering program is to support transformative research which applies scientific and engineering principles to avoid or minimize solid, liquid, and gaseous discharges, resulting from human activities on land, inland and coastal waters, and air, while promoting resource and energy conservation and recovery.  The program also fosters cutting-edge scientific research for identifying, evaluating, and monitoring the waste assimilative capacity of the natural environment and for removing or reducing contaminants from polluted air, water, and soils.
MiamiOH OARS

Biophotonics | NSF - National Science Foundation - 0 views

  •  
    The goal of the Biophotonics program is to explore the research frontiers in photonics principles, engineering and technology that are relevant for critical problems in fields of medicine, biology and biotechnology.  Fundamental engineering research and innovation in photonics is required to lay the foundations for new technologies beyond those that are mature and ready for application in medical diagnostics and therapies.  Advances are needed in nanophotonics, optogenetics, contrast and targeting agents, ultra-thin probes, wide field imaging, and rapid biomarker screening. Low cost and minimally invasive medical diagnostics and therapies are key motivating application goals.
  •  
    The goal of the Biophotonics program is to explore the research frontiers in photonics principles, engineering and technology that are relevant for critical problems in fields of medicine, biology and biotechnology.  Fundamental engineering research and innovation in photonics is required to lay the foundations for new technologies beyond those that are mature and ready for application in medical diagnostics and therapies.  Advances are needed in nanophotonics, optogenetics, contrast and targeting agents, ultra-thin probes, wide field imaging, and rapid biomarker screening. Low cost and minimally invasive medical diagnostics and therapies are key motivating application goals. 
MiamiOH OARS

Biotechnology and Biochemical Engineering | NSF - National Science Foundation - 0 views

  •  
    The Biotechnology and Biochemical Engineering (BBE) program supports fundamental engineering research that advances the understanding of cellular and biomolecular processes in engineering biology and eventually leads to the development of enabling technology for advanced manufacturing and/or applications in support of the biopharmaceutical, biotechnology, and bioenergy industries, or with applications in health or the environment.  A quantitative treatment of biological and engineering problems of biological processes is considered vital to successful research projects in the BBE program.
  •  
    The Biotechnology and Biochemical Engineering (BBE) program supports fundamental engineering research that advances the understanding of cellular and biomolecular processes in engineering biology and eventually leads to the development of enabling technology for advanced manufacturing and/or applications in support of the biopharmaceutical, biotechnology, and bioenergy industries, or with applications in health or the environment.  A quantitative treatment of biological and engineering problems of biological processes is considered vital to successful research projects in the BBE program.
MiamiOH OARS

Catalysis | NSF - National Science Foundation - 0 views

  •  
    The goal of the Catalysis program is to advance research in catalytic engineering science and promote  fundamental understanding and the development of catalytic materials and reactions that are of benefit to society.  Research in this program should focus on new basic understanding of catalytic materials and reactions, utilizing synthetic, theoretical, and experimental approaches.  Target applications include fuels, specialty and bulk chemicals, environmental catalysis, biomass conversion to fuels and chemicals, conversion of greenhouse gases, and generation of solar hydrogen, as well as efficient routes to energy utilization.
  •  
    The goal of the Catalysis program is to advance research in catalytic engineering science and promote  fundamental understanding and the development of catalytic materials and reactions that are of benefit to society.  Research in this program should focus on new basic understanding of catalytic materials and reactions, utilizing synthetic, theoretical, and experimental approaches.  Target applications include fuels, specialty and bulk chemicals, environmental catalysis, biomass conversion to fuels and chemicals, conversion of greenhouse gases, and generation of solar hydrogen, as well as efficient routes to energy utilization.
MiamiOH OARS

Chemical Measurement and Imaging | NSF - National Science Foundation - 0 views

  •  
    The Chemical Measurement and Imaging Program supports research focusing on chemically-relevant measurement science and chemical imaging, targeting both improved understanding of new and existing methods and development of innovative approaches and instruments.  Research areas include but are not limited to sampling and separation science; electroanalytical chemistry; spectrometry; and frequency- and time-domain spectroscopy.  Development of new chemical imaging and measurement tools probing chemical properties and processes are supported.  Innovations enabling the monitoring and imaging of chemical and electronic processes across a wide range of time and length scales are also relevant.  New approaches to data analysis and interpretation (including chemometrics) are encouraged.  Proposals addressing established techniques must seek improved understanding and/or innovative approaches to substantially broaden applicability.  Sensor-related proposals should address new approaches to chemical sensing, with prospects for broad utility and significant enhancement of current capabilities.
  •  
    The Chemical Measurement and Imaging Program supports research focusing on chemically-relevant measurement science and chemical imaging, targeting both improved understanding of new and existing methods and development of innovative approaches and instruments.  Research areas include but are not limited to sampling and separation science; electroanalytical chemistry; spectrometry; and frequency- and time-domain spectroscopy.  Development of new chemical imaging and measurement tools probing chemical properties and processes are supported.  Innovations enabling the monitoring and imaging of chemical and electronic processes across a wide range of time and length scales are also relevant.  New approaches to data analysis and interpretation (including chemometrics) are encouraged.  Proposals addressing established techniques must seek improved understanding and/or innovative approaches to substantially broaden applicability.  Sensor-related proposals should address new approaches to chemical sensing, with prospects for broad utility and significant enhancement of current capabilities.
MiamiOH OARS

Chemistry of Life Processes | NSF - National Science Foundation - 0 views

  •  
    The Chemistry of Life Processes (CLP) Program supports fundamental studies of biomolecules or biological systems at the interface of chemistry and biology. The primary contributions and innovations of the proposed research focus on the chemical aspects of the project. The Program supports studies that investigate how molecular structure, dynamics and interactions, as well as reaction thermodynamics and mechanisms are integrated with the chemistry performed by, or intrinsic to, the biological systems.
  •  
    The Chemistry of Life Processes (CLP) Program supports fundamental studies of biomolecules or biological systems at the interface of chemistry and biology. The primary contributions and innovations of the proposed research focus on the chemical aspects of the project. The Program supports studies that investigate how molecular structure, dynamics and interactions, as well as reaction thermodynamics and mechanisms are integrated with the chemistry performed by, or intrinsic to, the biological systems.
MiamiOH OARS

Condensed Matter Physics | NSF - National Science Foundation - 0 views

  •  
    The Condensed Matter Physics program supports experimental, as well as combined experiment and theory projects investigating the fundamental physics behind phenomena exhibited by condensed matter systems.  Representative research areas in such systems include: 1) phenomena at the nano- to macro-scale including: transport, magnetic, and optical phenomena; classical and quantum phase transitions; localization; electronic, magnetic, and lattice structure or excitations; superconductivity; and nonlinear dynamics. 2) low-temperature physics: quantum fluids and solids; 1D & 2D electron systems. 3) soft condensed matter: partially ordered fluids, granular and colloid physics, and 4) understanding the fundamental physics of new states of matter as well as the physical behavior of condensed matter under extreme conditions e.g., low temperatures, high pressures, and high magnetic fields.  Questions of current interest that span these research areas are:  How and why do complex macroscopic phenomena emerge from simple interacting microscopic constituents?  What new physics occurs far from equilibrium and why?  What is the physics behind the behavior of matter confined to the nanoscale in one or more dimensions?  What is the physics of spin systems and quantum states of matter that could lead to their coherent manipulation and control?
  •  
    The Condensed Matter Physics program supports experimental, as well as combined experiment and theory projects investigating the fundamental physics behind phenomena exhibited by condensed matter systems.  Representative research areas in such systems include: 1) phenomena at the nano- to macro-scale including: transport, magnetic, and optical phenomena; classical and quantum phase transitions; localization; electronic, magnetic, and lattice structure or excitations; superconductivity; and nonlinear dynamics. 2) low-temperature physics: quantum fluids and solids; 1D & 2D electron systems. 3) soft condensed matter: partially ordered fluids, granular and colloid physics, and 4) understanding the fundamental physics of new states of matter as well as the physical behavior of condensed matter under extreme conditions e.g., low temperatures, high pressures, and high magnetic fields.  Questions of current interest that span these research areas are:  How and why do complex macroscopic phenomena emerge from simple interacting microscopic constituents?  What new physics occurs far from equilibrium and why?  What is the physics behind the behavior of matter confined to the nanoscale in one or more dimensions?  What is the physics of spin systems and quantum states of matter that could lead to their coherent manipulation and control?
MiamiOH OARS

NASA's Centennial Challenges: 3D-Printed Habitat Challenge | NASA - 0 views

  •  
    Centennial Challenges is a program of prize competitions to stimulate innovation in technologies of interest and value to NASA and the nation. The 3DP Habitat Challenge is a prize competition designed to encourage development of new technologies, or application of existing technologies necessary to manufacture an off-world habitat using mission recycled materials and/or local indigenous materials. The goal of the 3D-Printed Habitat Challenge is to foster the development of new technologies necessary to additively manufacture a habitat using local indigenous materials with, or without, recyclable materials.
  •  
    Centennial Challenges is a program of prize competitions to stimulate innovation in technologies of interest and value to NASA and the nation. The 3DP Habitat Challenge is a prize competition designed to encourage development of new technologies, or application of existing technologies necessary to manufacture an off-world habitat using mission recycled materials and/or local indigenous materials. The goal of the 3D-Printed Habitat Challenge is to foster the development of new technologies necessary to additively manufacture a habitat using local indigenous materials with, or without, recyclable materials.
MiamiOH OARS

Advanced Technologies and Instrumentation | NSF - National Science Foundation - 0 views

  •  
    The Advanced Technologies and Instrumentation (ATI) program provides grants to support the development and construction of state-of-the-art astronomical detectors and instruments for the visible, infrared, submillimeter, and radio regions of the spectrum.  Successful proposals will involve the application of new hardware and software technology and/or innovative techniques in astronomical research in any of a broad range of fields, including (but not limited to) imaging instruments and spectrometers, semiconducting and superconducting detector arrays for astronomy, precision radial velocity hardware, polarization measurement hardware and techniques, correlator hardware, interferometric imaging, and adaptive optics.
  •  
    The Advanced Technologies and Instrumentation (ATI) program provides grants to support the development and construction of state-of-the-art astronomical detectors and instruments for the visible, infrared, submillimeter, and radio regions of the spectrum.  Successful proposals will involve the application of new hardware and software technology and/or innovative techniques in astronomical research in any of a broad range of fields, including (but not limited to) imaging instruments and spectrometers, semiconducting and superconducting detector arrays for astronomy, precision radial velocity hardware, polarization measurement hardware and techniques, correlator hardware, interferometric imaging, and adaptive optics.
MiamiOH OARS

Communications, Circuits, and Sensing-Systems | NSF - National Science Foundation - 0 views

  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) Program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative engineering research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS supports innovative research and integrated educational activities in micro- and nano- electromechanical systems (MEMS/NEMS), communications and sensing systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra- and inter- chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) Program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative engineering research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS supports innovative research and integrated educational activities in micro- and nano- electromechanical systems (MEMS/NEMS), communications and sensing systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra- and inter- chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
MiamiOH OARS

Smart and Connected Health | NSF - National Science Foundation - 0 views

  •  
    The purpose of this program is to develop next generation health care solutions and encourage existing and new research communities to focus on breakthrough ideas in a variety of areas of value to health, such as sensor technology, networking, information and machine learning technology, decision support systems, modeling of behavioral and cognitive processes, as well as system and process modeling. Effective solutions must satisfy a multitude of constraints arising from clinical/medical needs, social interactions, cognitive limitations, barriers to behavioral change, heterogeneity of data, semantic mismatch and limitations of current cyberphysical systems. Such solutions demand multidisciplinary teams ready to address technical, behavioral and clinical issues ranging from fundamental science to clinical practice.
  •  
    The purpose of this program is to develop next generation health care solutions and encourage existing and new research communities to focus on breakthrough ideas in a variety of areas of value to health, such as sensor technology, networking, information and machine learning technology, decision support systems, modeling of behavioral and cognitive processes, as well as system and process modeling. Effective solutions must satisfy a multitude of constraints arising from clinical/medical needs, social interactions, cognitive limitations, barriers to behavioral change, heterogeneity of data, semantic mismatch and limitations of current cyberphysical systems. Such solutions demand multidisciplinary teams ready to address technical, behavioral and clinical issues ranging from fundamental science to clinical practice.
MiamiOH OARS

IUSE / Professional Formation of Engineers: REvolutionizing engineering and computer sc... - 0 views

  •  
    This funding opportunity enables engineering and computer science departments to lead the nation by successfully achieving significant sustainable changes necessary to overcome longstanding issues in their undergraduate programs and educate inclusive communities of engineering and computer science students prepared to solve 21st century challenges.
  •  
    This funding opportunity enables engineering and computer science departments to lead the nation by successfully achieving significant sustainable changes necessary to overcome longstanding issues in their undergraduate programs and educate inclusive communities of engineering and computer science students prepared to solve 21st century challenges.
« First ‹ Previous 1281 - 1300 of 1989 Next › Last »
Showing 20 items per page