Skip to main content

Home/ OARS funding Engineering/ Group items tagged production

Rss Feed Group items tagged

MiamiOH OARS

Time-Delayed Release of Drugs - 0 views

  •  
    If a consumer is currently using one of our client's products, the earliest that they can currently take a tablet or pill is first thing in the morning, as soon as they wake up. It will then take a little time for the medication to have an effect. This means that there is a time early in the morning when it is not currently possible for the user to easily obtain the benefits of the product that they are using. In order to address this, it would be convenient if the consumer could take some of the product before they retire to bed. The therapeutic effect is then delayed for a few hours until shortly before they wake up, so that when they do wake up the product has already started to work. The client would like to be able to introduce a "night-time" version of their current product, which would have a delayed action of least four hours, and ideally 4-6 hours. After this time delay, the product would behave as if it had just been taken by the consumer. In other words, there is an "immediate release" of the drug, rather than a controlled or "sustained release".
MiamiOH OARS

Grants.gov - Find Grant Opportunities - Opportunity Synopsis - 0 views

  •  
    Gasification is used to convert a solid feedstock?such as coal, petcoke or biomass?into a gaseous form, referred to as syngas, which is composed primarily of hydrogen and carbon monoxide (CO). With gasification-based technologies, pollutants can be easily captured and then disposed of or converted to useful products. In the Department of Energy?s vision for clean power using gasification, steam is added to syngas in a water-gas shift (WGS) reactor to convert the CO to carbon dioxide (CO2) and to produce additional hydrogen. The hydrogen and CO2 are separated?the hydrogen is combusted to make power and the CO2 is captured and sent to storage, converted to useful product, or used for enhanced oil recovery (EOR). The Gasification Systems Technology Area takes full advantage of the flexibility inherent in gasification. For instance, technologies designed to clean syngas to chemical production standards also clean syngas for power production (i.e., integrated gasification combined cycle [IGCC]), often with significantly lower contaminant levels than the Environmental Protection Agency?s (EPA) criteria for power plant emissions. Technologies that lower the cost of producing high-hydrogen syngas for fuels or chemical production will also reduce the carbon footprint of IGCC. Advanced technologies being developed under the Gasification Systems Technology Area will provide a more efficient and economical platform for the capture and utilization of CO2. In addition to efficiently producing electric power, a wide range of liquids and/or high-value chemicals and fuels (especially diesel and gasoline) can be produced from cleaned, high-hydrogen syngas, thereby providing flexibility capable of capitalizing on a ra
MiamiOH OARS

Joint FY20 Bioenergy and Advanced Manufacturing FOA BOTTLE: Bio-Optimized Technologies ... - 0 views

  •  
    This FOA will support high-impact R&D for plastics by developing new plastics that are capable of efficient recyclability and improving recycling strategies that can break existing plastics into chemical building blocks that can be used to make higher-value products. DOE's Bioenergy Technologies Office (BETO) develops technologies that convert domestic biomass and waste resources into fuels, products, and power to enable affordable energy, economic growth, and innovation in renewable energy and chemicals production. DOE's Advanced Manufacturing Office (AMO) develops technologies that drive energy productivity improvements in the U.S. manufacturing sector, efficiently utilize abundant and available domestic energy resources, and support the manufacture of clean energy products with benefits extending across the economy. This Funding Opportunity Announcement (FOA) will support high-impact technology research and development (R&D) to enable the development of technologies that overcome the challenges associated with plastic waste. Topic Areas include: 1) Highly Recyclable or Biodegradable Plastics: develop new plastics that have improved performance attributes over a comparable existing plastic that can be cost-effectively recycled or biodegrade completely in the environment or in compost facilities. 2) Novel Methods for Deconstructing and Upcycling Existing Plastics: generate energy efficient recycling technologies (mechanical, chemical, or biological) that are capable of breaking plastic streams into intermediates which can be upgraded into higher value products. 3) BOTTLE Consortium Collaborations to Tackle Challenges in Plastic Waste: create collaborations with the Bio-Optimized Technologies to Keep Thermoplastics out of Landfills and the Environment (BOTTLE) Laboratory Consortium to further the long-term goals of the Consortium and the Plastics Innovation Challenge.
MiamiOH OARS

Nanomanufacturing | NSF - National Science Foundation - 0 views

  •  
    Nanomanufacturing is the production of useful nano-scale materials, structures, devices and systems in an economically viable manner. The NSF Nanomanufacturing Program supports fundamental research in novel methods and techniques for batch and continuous processes, top-down (addition/subtraction) and bottom-up (directed self-assembly) processes leading to the formation of complex heterogeneous nanosystems. The program supports basic research in nanostructure and process design principles, integration across length-scales, and system-level integration. The Program leverages advances in the understanding of nano-scale phenomena and processes (physical, chemical, electrical, thermal, mechanical and biological), nanomaterials discovery, novel nanostructure architectures, and new nanodevice and nanosystem concepts. It seeks to address quality, efficiency, scalability, reliability, safety and affordability issues that are relevant to manufacturing. To address these issues, the Program encourages research on processes and production systems based on computation, modeling and simulation, use of process metrology, sensing, monitoring, and control, and assessment of product (nanomaterial, nanostructure, nanodevice or nanosystem) quality and performance.
  •  
    Nanomanufacturing is the production of useful nano-scale materials, structures, devices and systems in an economically viable manner. The NSF Nanomanufacturing Program supports fundamental research in novel methods and techniques for batch and continuous processes, top-down (addition/subtraction) and bottom-up (directed self-assembly) processes leading to the formation of complex heterogeneous nanosystems. The program supports basic research in nanostructure and process design principles, integration across length-scales, and system-level integration. The Program leverages advances in the understanding of nano-scale phenomena and processes (physical, chemical, electrical, thermal, mechanical and biological), nanomaterials discovery, novel nanostructure architectures, and new nanodevice and nanosystem concepts. It seeks to address quality, efficiency, scalability, reliability, safety and affordability issues that are relevant to manufacturing. To address these issues, the Program encourages research on processes and production systems based on computation, modeling and simulation, use of process metrology, sensing, monitoring, and control, and assessment of product (nanomaterial, nanostructure, nanodevice or nanosystem) quality and performance.
MiamiOH OARS

Energy for Sustainability | NSF - National Science Foundation - 0 views

  •  
    The goal of the Energy for Sustainability program is to support fundamental engineering research that will enable innovative processes for the sustainable production of electricity and fuels, and for energy storage. Processes for sustainable energy production must be environmentally benign, reduce greenhouse gas production, and utilize renewable resources. Research projects that stress molecular level understanding of phenomena that directly impacts key barriers to improved system level performance (e.g. energy efficiency, product yield, process intensification) are encouraged. Proposed research should be inspired by the need for economic and impactful conversion processes. All proposals should include in the project description, how the proposed work, if successful, will improve process realization and economic feasibility and compare the proposed work against current state-of-the-art. Highly integrated multidisciplinary projects are encouraged.
MiamiOH OARS

Specialty Crop Research Initiative (SCRI) - 0 views

  •  
    The purpose of the SCRI program is to address the critical needs of the specialty crop industry by awarding grants to support research and extension that address key challenges of national, regional, and multi-state importance in sustaining all components of food and agriculture, including conventional and organic food production systems. Projects must address at least one of five focus areas: Research in plant breeding, genetics, genomics, and other methods to improve crop characteristics; Efforts to identify and address threats from pests and diseases, including threats to specialty crop pollinators; Efforts to improve production efficiency, handling and processing, productivity, and profitability over the long term (including specialty crop policy and marketing); new innovations and technology, including improved mechanization and technologies that delay or inhibit ripening; and methods to prevent, detect, monitor, control, and respond to potential food safety hazards in the production efficiency, handling and processing of specialty crops.
MiamiOH OARS

Electrochemical Systems - 0 views

  •  
    he Electrochemical Systems program is part of the Chemical Process Systems cluster, which includes also 1) Catalysis; 2) Molecular Separations; and 3) Process Systems, Reaction Engineering, and Molecular Thermodynamics. The goal of the Electrochemical Systems program is to support fundamental engineering research that will enable innovative processes involving electro- or photochemistry for the sustainable production of electricity, fuels, and chemicals. Processes for sustainable energy and chemical production must be scalable, environmentally benign, reduce greenhouse gas production, and utilize renewable resources. Research projects that stress fundamental understanding of phenomena that directly impact key barriers to improved system or component-level performance (e.g., energy efficiency, product yield, process intensification) are encouraged. Processes for energy storage should address fundamental research barriers for the applications of renewable electricity storage or for transport propulsion
MiamiOH OARS

Electrochemical Systems - 0 views

  •  
    The Electrochemical Systems program is part of the Chemical Process Systems cluster, which also includes: 1) the Catalysis program; 2) the Interfacial Engineering program; and 3) the Process Systems, Reaction Engineering, and Molecular Thermodynamics program. The goal of the Electrochemical Systems program is to support fundamental engineering research that will enable innovative processes involving electro- or photochemistry for the sustainable production of electricity, fuels, and chemicals. Processes for sustainable energy and chemical production must be scalable, environmentally benign, reduce greenhouse gas production, and utilize renewable resources. Research projects that stress fundamental understanding of phenomena that directly impact key barriers to improved system or component-level performance (for example, energy efficiency, product yield, process intensification) are encouraged. Processes for energy storage should address fundamental research barriers for the applications of renewable electricity storage or for transport propulsion. For projects concerning energy storage materials, proposals should involve hypotheses that involve device or component performance characteristics that are tied to fundamental understanding of transport, kinetics, or thermodynamics. Advanced chemistries are encouraged. Proposed research should be inspired by the need for economic and impactful conversion processes. All proposal project descriptions should address how the proposed work, if successful, will improve process realization and economic feasibility and compare the proposed work against current state of the art. Highly integrated multidisciplinary projects are encouraged.
MiamiOH OARS

Science & Technology for Advanced Manufacturing Projects (STAMP) | DOD ONR - 0 views

  •  
    The focus of this BAA is primarily on projects that continue to advance the systems engineering approach needed for the design, fabrication, and manufacture of structural components to address challenges in system weight, performance, affordability, and/or survivability. The foundation of this approach should include the integration of materials information, captured in computational tools, with engineering product performance analysis and manufacturing-process simulation termed commonly as Integrated Computational Materials Engineering (ICME). From this foundation it is expected the integration of manufacturing process information and product performance information utilizing the full range of engineering and analytical tools, processes, and principles to improve efficiency and effectiveness of their integrated approach. The intent is to bring together materials designers, materials suppliers, product designers, and manufacturers to collaborate on the design, production, and commercialization of novel affordable, manufacturable systems. Projects may include basic and applied research, technology and component development, and prototyping; but may also focus on manufacturing supply-chain technical support and integration, workforce development, and manufacturing education.
MiamiOH OARS

nsf.gov - Funding - Energy for Sustainability - US National Science Foundation (NSF) - 0 views

  •  
    This program supports fundamental research and education that will enable innovative processes for the sustainable production of electricity and transportation fuels.  Processes for sustainable energy production must be environmentally benign, reduce greenhouse gas production, and utilize renewable resources. 
MiamiOH OARS

Energy for Sustainability - 0 views

  •  
    The goal of the Energy for Sustainability program is to support fundamental engineering research that will enable innovative processes and solutionsfor the sustainable production of electricity and fuels, and energy storage. Processes for sustainable energy production must be environmentally benign, reduce greenhouse gas production, and utilize renewable resources. Current topics of interest include: Biomass Conversion, Biofuels & Bioenergy: Fundamental research on innovative approaches that lead to the intensification of biofuel and bioenergy processes is an emphasis area of this program.
MiamiOH OARS

Energy for Sustainability | NSF - National Science Foundation - 0 views

  •  
    The goal of the Energy for Sustainability program is to support fundamental engineering research that will enable innovative processes and solutions for the sustainable production of electricity and fuels, and energy storage. Processes for sustainable energy production must be environmentally benign, reduce greenhouse gas production, and utilize renewable resources. 
MiamiOH OARS

Biosystems Design to Enable Next-Generation Biofuels and Bioproducts - 0 views

  •  
    Biological and Environmental Research (BER) of the Office of Science (SC), U.S. Department of Energy (DOE) hereby announces its interest in receiving applications for research of interest to the Genomic Science Program (http://genomicscience.energy.gov) in the following research areas: a) Integrating large-scale systems biology data to model, design, and engineer microbial systems for the production of biofuels and bioproducts: Interdisciplinary approaches to develop innovative, high-throughput modeling, genome-wide design and editing, and engineering technologies for a broad range of microbes relevant for the production of biofuels and bioproducts from biomass. b) Plant systems design for bioenergy: To develop novel technologies for genome-scale engineering to re-design bioenergy crops that can grow in marginal environments while producing high yield of biomass that can be easily converted to biofuels and bioproducts. Applications should include strategies to address biocontainment, minimizing risks of potential release of engineered organisms into the environment or other unintended outcomes.
  •  
    Biological and Environmental Research (BER) of the Office of Science (SC), U.S. Department of Energy (DOE) hereby announces its interest in receiving applications for research of interest to the Genomic Science Program (http://genomicscience.energy.gov) in the following research areas: a) Integrating large-scale systems biology data to model, design, and engineer microbial systems for the production of biofuels and bioproducts: Interdisciplinary approaches to develop innovative, high-throughput modeling, genome-wide design and editing, and engineering technologies for a broad range of microbes relevant for the production of biofuels and bioproducts from biomass. b) Plant systems design for bioenergy: To develop novel technologies for genome-scale engineering to re-design bioenergy crops that can grow in marginal environments while producing high yield of biomass that can be easily converted to biofuels and bioproducts. Applications should include strategies to address biocontainment, minimizing risks of potential release of engineered organisms into the environment or other unintended outcomes.
MiamiOH OARS

Low Temperature Geothermal Mineral Recovery Program - 0 views

  •  
    While geothermal power is an attractive potential source for sustainable energy production, the high heat temperature requirements (typically >150?C) of most geothermal capture systems constrain geographic distribution and economic viability of geothermal energy production. Advancement of strategic material or mineral recovery aims to address this limitation. By partnering with geothermal and mineral industry stakeholders to develop additional revenue streams from brines, the economic viability of geothermal projects will increase while also allowing for increased geographic diversity of this clean, round-the-clock energy source. Rare earths and strategic minerals are essential for modern industry, especially clean-energy technologies, but are subject to supply risk in the face of ever-increasing demand. As an example, consumer uses of lithium batteries have soared over the last decade, powering everything from electric cars to tablets to cell phones. Global demand for lithium carbonate is expected to exceed 250,000 tons by 2017?a 60% increase over current usage. As demand grows in this burgeoning market, a reliable supply of critical materials for advanced manufacturing technologies is a growing concern. This program aims to help alleviate this type of supply bottleneck. The Energy Department seeks up to ten 1-2 year feasibility and/or applied R&D projects that will lead to commercialized technologies. Geothermal mining of rare earth and near-critical metals are the focus of this research, with the intent to effectively lower the cost of geothermal energy production while diversifying and stabilizing the supply of critical materials for domestic industries.
MiamiOH OARS

Walmart U.S. Manufacturing Innovation Fund - 0 views

  •  
    Funding research in the manufacturing space in focus areas identified as major challenges is one way Walmart can facilitate and accelerate U.S. manufacturing. The Fund will achieve this goal through grants that directly support applied research projects advancing innovative solutions to key challenges that, once addressed, can lower the cost of making consumer products in the U.S. The Fund looks primarily at the following criteria: (1) impact on consumer product manufacturing, (2) stage of development and commercial viability, (3) degree of innovation, and (4) ability of the organization and team to successfully carry out the proposed project. Specific eligibility requirements are as follows: 1.      Only U.S. 501(c)(3) organizations and public universities that are instrumentalities of a state government are eligible for funding at this time* 2.     At least 50% of project teams must be based in the U.S. 3.     Project teams should seek sponsorship from the mayor of a USCM mayor when submitting full project proposals 4.     Proposed projects should address a technological innovation that can advance U.S. manufacturing. For the current RFP, we are seeking to support projects reducing the cost of producing textiles and apparel in the U.S. More specifically, we are seeking projects that address: Weaving Fabric dyeing Cut and sew 5.     Projects must have a budget exceeding $100,000 per year 6.     Overhead costs must not exceed 10% of total project budget 7.     Prospective grantees should demonstrate an ability to conduct the proposed product via expertise and/or past experience The Fund is currently not awarding grants for building or capital projects, supplier agreements, or other non-research projects.
MiamiOH OARS

I/UCRC Proposals in Response to NSF 13-594 in Areas Related to Engineering Biology and ... - 0 views

  •  
    In emerging areas of technology at the interface between fields such as the engineering of biology and cellular biomanufacturing, including the field of synthetic biology, there is an even greater need for collaborative precompetitive research that will ensure the success of these nascent technology areas. In particular, research that contributes to the establishment of standards for production; provides tools for the assessment of quality, robustness and stability of the process and product; and develops metrics that will facilitate risk assessment associated with a regulatory framework, will be essential for the eventual commercialization of products from the engineering of biology.
MiamiOH OARS

Solid-State Lighting Advanced Technology Research and Development 2015 - 0 views

  •  
    Through research and development of solid state lighting (SSL) including both light emitting diode and organic light emitting diode technologies the objectives of this opportunity are to maximize the energy efficiency of SSL products in the market place, remove market barriers through improvements to lifetime, color quality, and lighting system performance, reduce costs of SSL sources and luminaires, improve product consistency while maintaining high quality products, and encourage the growth, leadership, and sustainability of domestic US manufacturing within the SSL industry.
MiamiOH OARS

Catalysis and Biocatalysis - 0 views

  •  
    The goal of the Catalysis and Biocatalysis program is to drive innovation in the production of the myriad of goods and services that are derived from catalyst-driven reactions.  Research in this program encompasses a blend of fundamental, engineering research drivers that are interdisciplinary in nature.  Studies should focus on the catalysis of one or more use-inspired chemical reactions with products including fuels, energy, feedstocks, fine chemicals, bulk chemicals and specialized materials.  While proposals will be accepted in any of the above areas, an emphasis will be placed on proposals addressing the significant existing challenges in producing products for the service of mankind.
MiamiOH OARS

Mentored Quantitative Research Development Award (Parent K25 - Independent Basic Experi... - 0 views

  •  
    The purpose of the Mentored Quantitative Research Career Development Award (K25) is to attract to NIH-relevant research those investigators whose quantitative science and engineering research has thus far not been focused primarily on questions of health and disease. The K25 award will provide support and "protected time" for a period of supervised study and research for productive professionals with quantitative (e.g., mathematics, statistics, economics, computer science, imaging science, informatics, physics, chemistry) and engineering backgrounds to integrate their expertise with NIH-relevant research. This Funding Opportunity Announcement (FOA) is designed specifically for applicants proposing to lead basic science experimental studies involving humans, referred to in NOT-OD-18-212 as prospective basic science studies involving human participants. These studies fall within the NIH definition of a clinical trial and also meet the definition of basic research. Types of studies that should submit under this FOA include studies that prospectively assign human participants to conditions (i.e., experimentally manipulate independent variables) and that assess biomedical or behavioral outcomes in humans for the purpose of understanding the fundamental aspects of phenomena without specific application towards processes or products in mind. Studies conducted with specific applications toward processes or products in mind should submit under the companion PA-18-395.
MiamiOH OARS

NineSights Community - Request for Proposal: 2aNo-Spill Flexible Package 2c - 0 views

  •  
    NineSigma's client seeks a no-spill dispensing solution for consumer flexible pouches for a variety of viscous products similar to food purées and water. The product is dispensed by the consumer from ages 8 months and older. Product is dispensed when the consumer sucks from the flexible package, squeezes the package, or a combination of the two. First time young consumers (8 to 36 months), without any learned behavior, tend to grasp the flexible package causing the contents to spill unintentionally. Other accidents occur when the flexible format is dropped by accident and the contents spill. NineSigma's client seeks alternate methods to ensure controlled dispensing to avoid spills, and develop a dispensing solution that allows the pouch contents to evacuate upon sucking or by intentional and intuitive means.
1 - 20 of 260 Next › Last »
Showing 20 items per page