Skip to main content

Home/ OARS funding Engineering/ Group items tagged environmental sustainability

Rss Feed Group items tagged

MiamiOH OARS

nsf.gov - Funding - Energy for Sustainability - US National Science Foundation (NSF) - 0 views

  •  
    This program supports fundamental research and education that will enable innovative processes for the sustainable production of electricity and transportation fuels.  Processes for sustainable energy production must be environmentally benign, reduce greenhouse gas production, and utilize renewable resources. 
MiamiOH OARS

Process Systems, Reaction Engineering and Molecular Thermodynamics | NSF - National Sci... - 0 views

  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding.
  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding.
MiamiOH OARS

Process Systems, Reaction Engineering and Molecular Thermodynamics | NSF - National Sci... - 0 views

  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding
  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding
MiamiOH OARS

Electrochemical Systems - 0 views

  •  
    he Electrochemical Systems program is part of the Chemical Process Systems cluster, which includes also 1) Catalysis; 2) Molecular Separations; and 3) Process Systems, Reaction Engineering, and Molecular Thermodynamics. The goal of the Electrochemical Systems program is to support fundamental engineering research that will enable innovative processes involving electro- or photochemistry for the sustainable production of electricity, fuels, and chemicals. Processes for sustainable energy and chemical production must be scalable, environmentally benign, reduce greenhouse gas production, and utilize renewable resources. Research projects that stress fundamental understanding of phenomena that directly impact key barriers to improved system or component-level performance (e.g., energy efficiency, product yield, process intensification) are encouraged. Processes for energy storage should address fundamental research barriers for the applications of renewable electricity storage or for transport propulsion
MiamiOH OARS

Electrochemical Systems - 0 views

  •  
    The Electrochemical Systems program is part of the Chemical Process Systems cluster, which also includes: 1) the Catalysis program; 2) the Interfacial Engineering program; and 3) the Process Systems, Reaction Engineering, and Molecular Thermodynamics program. The goal of the Electrochemical Systems program is to support fundamental engineering research that will enable innovative processes involving electro- or photochemistry for the sustainable production of electricity, fuels, and chemicals. Processes for sustainable energy and chemical production must be scalable, environmentally benign, reduce greenhouse gas production, and utilize renewable resources. Research projects that stress fundamental understanding of phenomena that directly impact key barriers to improved system or component-level performance (for example, energy efficiency, product yield, process intensification) are encouraged. Processes for energy storage should address fundamental research barriers for the applications of renewable electricity storage or for transport propulsion. For projects concerning energy storage materials, proposals should involve hypotheses that involve device or component performance characteristics that are tied to fundamental understanding of transport, kinetics, or thermodynamics. Advanced chemistries are encouraged. Proposed research should be inspired by the need for economic and impactful conversion processes. All proposal project descriptions should address how the proposed work, if successful, will improve process realization and economic feasibility and compare the proposed work against current state of the art. Highly integrated multidisciplinary projects are encouraged.
MiamiOH OARS

Grand Challenge: 2aOmnipreneurship Awards 2020: Sustainability Branch | NineSights Com... - 0 views

  •  
    As a leading poultry meat producer and distributor, TFC, part of ADG, is dedicated to contributing to a circular society and are now looking for ideas which can be realized and technologies that help to find an 'environmentally positive' second life for their waste products. TFC are seeking new uses and processing technologies for the waste generated by their farms. Their goal is that the waste produced becomes useful raw materials that can be used in other processes or high added value products for their core business. In a nutshell, TFC would like the waste to become of value to the company and to the environment. This would allow TFC to offset all the costs of disposal and eventually, it should generate a 'clean & green' revenue from the waste. Fresh thinking about the uses and the value of the waste could lead to new business models or cost-effective solutions that will make TFC's waste valuable and promote environmentally friendly reuse or recycling of the generated waste streams. The focus of this challenge is to find a solution that will process chicken farm waste in a cost-effective, commercially viable manner to create a positive impact on TFC as a corporate entity, on the environment in the Kingdom of Saudi Arabia and ultimately global ecosystem.
MiamiOH OARS

Pivot - 0 views

  •  
    Individual Warfighter protection against battlefield threats such as ballistics, enemy detection, chemical and biological agents, and IEDs is essential to the continued effectiveness of the fighting force. At the same time, protective materials (clothing/armor, etc.) must also be effective and ensure survival under extremes of environmental (temperature and humidity) conditions without significant sacrifices in Warfighter comfort. Current textile technologies require multiple components to be added to the Warfighter uniform in order to meet these threats. Development of novel multifunctional materials would have significant impact on Warfighter load, increasing their sustainability in the field. In addition to threat survivability, there is a strong interest in the new and growing field of "wearables." The wearables field is of interest insofar as it relates to the integration of electronic capabilities in to textile materials, combat clothing and combat field equipment worn by Warfighters.
MiamiOH OARS

Grants.gov - Find Grant Opportunities - Opportunity Synopsis - 0 views

  •  
    The Particulate and Multiphase Processes program supports fundamental and applied research on phenomena governing particulate and multiphase processes, including flows of suspensions of particles, drops or bubbles, granular and granular-fluid flows, flow behavior of micro or nano-structured fluids, aerosol science and technology, and self- and directed-assembly processes involving particulates. Innovative research is sought that contributes to improving the basic understanding, design, predictability, efficiency, and control of particulate and multiphase processes with particular emphasis on: novel manufacturing techniques, multiphase systems of relevance to energy harvesting, multiphase transport in biological systems or biotechnology, and environmental sustainability.
MiamiOH OARS

Process Systems, Reaction Engineering and Molecular Thermodynamics | NSF - National Sci... - 0 views

  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding
MiamiOH OARS

Scalable Nanomanufacturing for Integrated Systems - 0 views

  •  
    Many nanofabrication techniques have demonstrated the ability to synthesize small quantities of nanomaterials and nanostructures for characterization and evaluation and simple nanodevices for analysis and testing purposes. The emphasis of the Scalable Nanomanufacturing for Integrated Systems (SNM-IS) solicitation is on research in new nano-scale manufacturing concepts and integration methods to realize complex integrated systems based on nanotechnology. The research will focus on overcoming the key scientific and engineering barriers that prevent the translation of laboratory-scale discoveries in nano-enabled integrated systems to an industrially relevant scale, reliably, affordably and within sustainability and environmental, health and safety (EHS) guidelines. The goal of the SNM-IS solicitation is to study and formulate the fundamental principles of scalable nanomanufacturing and integration for nanotechnology-based integrated systems towards the eventual manufacture of useful nano-enabled products.
MiamiOH OARS

Particulate and Multiphase Processes | NSF - National Science Foundation - 0 views

  •  
    The goal of the Particulate and Multiphase Processes (PMP) program is to support fundamental research on physico-chemical phenomena that govern particulate and multiphase systems, including flow of suspensions, drops and bubbles, granular and granular-fluid flows, behavior of micro- and nanostructured fluids, and self-assembly/directed-assembly processes that involve particulates. The program encourages transformative research to improve our basic understanding of particulate and multiphase processes with emphasis on research that demonstrates how particle-scale phenomena affect the behavior and dynamics of larger-scale systems. Although proposed research should focus on fundamentals, a clear vision is required that anticipates how results could benefit important applications in advanced manufacturing, energy harvesting, transport in biological systems, biotechnology, or environmental sustainability. Collaborative and interdisciplinary proposals are encouraged, especially those that involve a combination of experiment with theory or modeling.
MiamiOH OARS

nsf.gov - Funding - Particulate and Multiphase Processes - US National Science Foundati... - 0 views

  •  
    The Particulate and Multiphase Processes program supports fundamental and applied research on phenomena governing particulate and multiphase processes, including flows of suspensions of particles, drops or bubbles, granular and granular-fluid flows, flow behavior of micro or nano-structured fluids, aerosol science and technology, and self- and directed-assembly processes involving particulates.  Innovative research is sought that contributes to improving the basic understanding, design, predictability, efficiency, and control of particulate and multiphase processes with particular emphasis on: novel manufacturing techniques, multiphase systems of relevance to energy harvesting, multiphase transport in biological systems or biotechnology, and environmental sustainability.  Collaborative and interdisciplinary proposals are encouraged; proposals that include a combination of experimental and theoretical approaches are more likely to receive funding than solely experimentally oriented work.  Highly reviewed projects generally demonstrate a strong scientific basis together with clear practical applications.
MiamiOH OARS

Scalable Nanomanufacturing - 0 views

  •  
    The National Science Foundation (NSF) announces a fourth year of a program on collaborative research and education in the area of scalable nanomanufacturing, including the long-term societal implications of the large-scale implementation of nanomanufacturing innovations. This program is in response to and is a component of the National Nanotechnology Initiative Signature Initiative: Sustainable Nanomanufacturing - Creating the Industries of the Future (http://www.nano.gov/node/611.) Although many nanofabrication techniques have demonstrated the ability to fabricate small quantities of nanomaterials, nanostructures and nanodevices for characterization and evaluation purposes, the emphasis of the scalable nanomanufacturing program is on research to overcome the key scientific and technological barriers that prevent the production of useful nanomaterials, nanostructures, devices and systems at an industrially relevant scale, reliably, and at low cost and within environmental, health and safety guidelines. 
MiamiOH OARS

Innovative Development in Energy-Related Applied Science - 0 views

  •  
     Within this general framework, ARPA-E seeks transformative ideas that enable the most efficient, economical, sustainable, and environmentally benign conversion of energy while minimizing exergy destruction.
MiamiOH OARS

Future of Work at the Human-Technology Frontier: Core Research | NSF - National Science... - 0 views

  •  
    The landscape of jobs and work is changing at unprecedented speed, enabled by advances in computer and engineering technologies such as artificial intelligence and robotics, deeper understanding of societal and environmental change, advances in the learning sciences, pervasive, intelligent, and autonomous systems, and new conceptions of work and workplaces. This technological and scientific revolution presents a historical opportunity to the Nation and its people, in the creation of new industries and occupations, enhanced productivity and quality of work life, and the potential for more people to participate in the workforce, ultimately yielding sustained innovation and global leadership. But, as history teaches, such changes also come with risks. Some risks are immediate, such as jobs lost to automation or demand for skills not met by current educational pathways. Other equally important risks include new security threats, algorithmic biases, unanticipated legal consequences including privacy implications, dependence on technology and erosion of human knowledge and skills, inadequate workplace policies and practices, or undesirable impact on the built environment.
MiamiOH OARS

ABC Humane Wildlife Control & Prevention, Inc.'s Academic Scholarship | Instrumentl - 0 views

  •  
    ABC Wildlife humanely manages urban wildlife and insects in the interest of human health and safety from an environmental sustainability perspective with a love of nature and a deep respect for all living things. ABC Wildlife has offered humane wildlife removal services to the Chicagoland area for over 35 years.  As a woman-owned corporation operating in a largely male field, ABC Wildlife understands the remarkable impact women can have when allowed to break through. We want to pave the way for other women pursuing their dreams in the scientific world, which is why ABC Wildlife is introducing a scholarship designed to increase the number of women studying and influencing the future of science, including technology, engineering and math.
MiamiOH OARS

Process Separations - 0 views

  •  
    The Process Separations program is part of the Chemical Process Systems cluster, which includes also 1) Catalysis; 2) Process Systems, Reaction Engineering, and Molecular Thermodynamics; and 3) Energy for Sustainability. The Process Separations program supports research focused on novel methods and materials for separation processes, such as those central to the chemical, biochemical, bioprocessing, materials, energy, and pharmaceutical industries. A fundamental understanding of the interfacial, transport, and thermodynamic behavior of multiphase chemical systems as well as quantitative descriptions of processing characteristics in the process-oriented industries is critical for efficient resource management and effective environmental protection. The program encourages proposals that address long standing challenges and emerging research areas and technologies, have a high degree of interdisciplinary work coupled with the generation of fundamental knowledge, and the integration of education and research. Research topics of particular interest include fundamental molecular-level work on: Design of scalable mass separating agents and/or a mechanistic understanding of the interfacial thermodynamics and transport phenomena that relate to purification of gases, chemicals, or water
MiamiOH OARS

Plant Feedstock Genomics for Bioenergy - 0 views

  •  
    The U.S. Department of Energy's Office of Science, Biological and Environmental Research (BER) hereby announces interest in receiving applications for genomics-based research that will lead to the improved use of plant biomass and feedstocks for the production of biofuels and renewable chemical feedstocks. Applications are sought for research on candidate herbaceous and woody plants with improved resistance/tolerance to disease and disease complexes, and non-food oil seed crops for improved winter cold tolerance/survivability and agronomic traits. Research to overcome these biological barriers to the low-cost, high-quality, scalable and sustainable production of dedicated bioenergy biomass feedstocks using the tools of genetics and genomics are encouraged.
MiamiOH OARS

Particulate and Multiphase Processes - 0 views

  •  
    The Particulate and Multiphase Processes program is part of the Transport Phenomena cluster, which also includes 1) the Combustion and Fire Systems program; 2) the Fluid Dynamics program; and 3) the Thermal Transport Processes program. The goal of the Particulate and Multiphase Processes program is to support fundamental research on physico-chemical phenomena that govern particulate and multiphase systems, including flow of suspensions, drops and bubbles, granular and granular-fluid flows, behavior of micro- and nanostructured fluids, unique characteristics of active fluids, and self assembly/directed-assembly processes that involve particulates. The program encourages transformative research to improve our basic understanding of particulate and multiphase processes with emphasis on research that demonstrates how particle-scale phenomena affect the behavior and dynamics of larger-scale systems. Although proposed research should focus on fundamentals, a clear vision is required that anticipates how results could benefit important applications in advanced manufacturing, energy harvesting, transport in biological systems, biotechnology, or environmental sustainability. Collaborative and interdisciplinary proposals are encouraged, especially those that involve a combination of experiment with theory or modeling.
MiamiOH OARS

2aSeeking Sustainable Feedstocks for Carbon Black 2c - 0 views

  •  
    NineSigma, on behalf of a global leader in the manufacture of high-value carbon products, invites proposals for novel, sustainable or recycling-derived feedstocks suitable for producing carbon black.
‹ Previous 21 - 40 of 49 Next ›
Showing 20 items per page