Skip to main content

Home/ Groups/ OARS funding Computer
MiamiOH OARS

NIST Consortium for Semiconductor and Future Computing Research Grant Program - 0 views

  •  
    NIST is soliciting proposals for financial assistance from eligible applicants to support basic research, in a consortium-based setting, focused on the long-term research needs of industry in the area of future computing and information processing. There is a critical need for scientific and engineering advances in novel computing paradigms with long-term impact on the semiconductor, electronics, computing, and defense industries. The proposed activities should advance the physical and materials aspects of future computing technologies with a focus on alternatives that provide low latency, low energy per operation, improved data/communication bandwidth, and higher clock speed. Activities should include innovative research in devices, circuits, architectures, metrology or characterization to enable future computing paradigms. Applicants should create mechanisms for extended collaboration with NIST researchers.
MiamiOH OARS

Industry-University Cooperative Research Centers Program - 0 views

  •  
    The Industry-University Cooperative Research Centers (IUCRC) program develops long-term partnerships among industry, academe, and government. The Centers are catalyzed by an investment from the National Science Foundation (NSF) and are primarily supported by industry Center members, with NSF taking a supporting role in the development and evolution of the Center. Each Center is established to conduct research that is of interest to both the industry members and the Center faculty. An IUCRC contributes to the nation's research infrastructure base and enhances the intellectual capacity of the engineering and science workforce through the integration of research and education. As appropriate, an IUCRC uses international collaborations to advance these goals within the global context.
MiamiOH OARS

Computing and Communication Foundations (CCF): Core Programs | NSF - National Science F... - 0 views

  •  
    CISE's Division of Computing and Communication Foundations (CCF) supports research and education projects that develop new knowledge in three core programs: -The Algorithmic Foundations (AF) program; -The Communications and Information Foundations (CIF) program; -The Software and Hardware Foundations (SHF) program.
MiamiOH OARS

Secure and Trustworthy Cyberspace | NSF - National Science Foundation - 0 views

  •  
    The SaTC program welcomes proposals that address cybersecurity and privacy, and draw on expertise in one or more of these areas: computing, communication and information sciences; engineering; economics; education; mathematics; statistics; and social and behavioral sciences. Proposals that advance the field of cybersecurity and privacy within a single discipline or interdisciplinary efforts that span multiple disciplines are both encouraged.
MiamiOH OARS

Virtuous User Environment (VirtUE) Phase 1 - Federal Business Opportunities: Opportunities - 0 views

  •  
    VirtUE seeks to leverage the federal government's impending migration to commercial cloud based information Technology (IT) infrastructures and the current explosion of new virtualization and operating system (OS) concepts to create and demonstrate a more secure interactive user computing environment (UCE) than the government has had in the past or likely to have in the near future. Currently the government UCE is represented by a general purpose Windows desktop OS running multiple installed applications hosted on either a dedicated physical computer or on a shared virtualized platform. When a desktop OS is hosted on a shared virtualized platform, it is called a virtualized desktop interface or VDI.
MiamiOH OARS

Use of Technology to Enhance Patient Outcomes and Prevent Illness (R21) - 0 views

  •  
    This Funding Opportunity Announcement (FOA) seeks clinical research focused on the development and utilization of technologies that can help address patient outcomes. Relevant areas of technology include remote healthcare delivery to patients via telehealth, robotics to enhance medication adherence, on-site (e.g., clinical or home setting) care delivery, mobile heath to increase access and adherence, web-based decision support tools, and others.  Research projects may focus on assessment, diagnosis, intervention development, or intervention implementation.  Research projects that a) incorporate emerging and cutting edge technologies to explain and predict patient trajectories, b) inform interventions, c) support real-time clinical decision making, and d) facilitate effective long-term management of chronic illness are especially needed.  Critical to this FOA, proposed research should identify specific patient outcomes expected to improve from technological approaches.  The specific tools or interventions proposed should clearly indicate how they will enhance patient benefits in environments, such as clinical settings, and/or in the home and community.
MiamiOH OARS

BRAIN Initiative Cell Census Network (BICCN) Brain Cell Data Center (U24) - 0 views

  •  
    This Funding Opportunity Announcement (FOA) intends to support a Brain Cell Data Center (BCDC) that will work with other BICCN Centers and interested researchers to establish a web-accessible information system to capture, store, analyze, curate, and display all data and metadata on brain cell types, and their connectivity. The BCDC is expected to: (1) lead the effort to establish spatial and semantic standards for managing heterogeneous brain cell census data types and information; (2) lead the effort to collect and register multimodal brain cell census data to common brain coordinate systems; (3) generate searchable 2D and 3D digital brain atlases for cell census data; and (4) generate a unified and comprehensive brain cell knowledge base that integrates all existing brain cell census data and information across diverse repositories.  A central goal of this and the three companion FOAs is to build a brain cell census resource that can be widely used throughout the research community.
MiamiOH OARS

Microphysiological Systems (MPS) for Disease Modeling and Efficacy Testing (UG3/UH3) - 0 views

  •  
    This FOA invites applications for the Microphysiological Systems (MPS) for Disease Modeling and Efficacy Testing Program to develop highly reproducible and translatable in vitro models for preclinical efficacy studies through discovery and validation of translatable biomarkers, development of standardized methods for preclinical efficacy testing and definitive efficacy testing of candidate therapeutics using best practices and rigorous study design. An essential feature will be a multidisciplinary approach that brings together experts in bioengineering, microfluidics, material science, "omic" sciences, computational biology, disease biology, pathology, electrophysiology, pharmacology, biostatistics and clinical science.
  •  
    This FOA invites applications for the Microphysiological Systems (MPS) for Disease Modeling and Efficacy Testing Program to develop highly reproducible and translatable in vitro models for preclinical efficacy studies through discovery and validation of translatable biomarkers, development of standardized methods for preclinical efficacy testing and definitive efficacy testing of candidate therapeutics using best practices and rigorous study design. An essential feature will be a multidisciplinary approach that brings together experts in bioengineering, microfluidics, material science, "omic" sciences, computational biology, disease biology, pathology, electrophysiology, pharmacology, biostatistics and clinical science.
MiamiOH OARS

Macromolecular, Supramolecular and Nanochemistry | NSF - National Science Foundation - 0 views

  •  
    The Macromolecular, Supramolecular and Nanochemistry (MSN) Program focuses on basic research that addresses fundamental questions regarding the chemistry of macromolecular, supramolecular and nanoscopic species and other organized structures and that advances chemistry knowledge in these areas.  Research of interest to this program will explore novel chemistry concepts in the following topics: (1) The development of novel synthetic approaches to clusters, nanoparticles, polymers, and supramolecular architectures; innovative surface functionalization methodologies; surface monolayer chemistry; and template-directed synthesis.  (2) The study of molecular-scale interactions that give rise to macromolecular, supramolecular or nanoparticulate self-assembly into discrete structures; and the study of chemical forces and dynamics that are responsible for spatial organization in discrete organic, inorganic, or hybrid systems (excluding extended solids).  (3) Investigations that utilize advanced experimental or computational methods to understand or to predict the chemical structure, unique chemical and physicochemical properties, and chemical reactivities that result from the organized or nanoscopic structures.  Research in which theory advances experiment and experiment advances theory synergistically is of special interest.
  •  
    The Macromolecular, Supramolecular and Nanochemistry (MSN) Program focuses on basic research that addresses fundamental questions regarding the chemistry of macromolecular, supramolecular and nanoscopic species and other organized structures and that advances chemistry knowledge in these areas.  Research of interest to this program will explore novel chemistry concepts in the following topics: (1) The development of novel synthetic approaches to clusters, nanoparticles, polymers, and supramolecular architectures; innovative surface functionalization methodologies; surface monolayer chemistry; and template-directed synthesis.  (2) The study of molecular-scale interactions that give rise to macromolecular, supramolecular or nanoparticulate self-assembly into discrete structures; and the study of chemical forces and dynamics that are responsible for spatial organization in discrete organic, inorganic, or hybrid systems (excluding extended solids).  (3) Investigations that utilize advanced experimental or computational methods to understand or to predict the chemical structure, unique chemical and physicochemical properties, and chemical reactivities that result from the organized or nanoscopic structures.  Research in which theory advances experiment and experiment advances theory synergistically is of special interest.
MiamiOH OARS

Energy, Power, Control, and Networks | NSF - National Science Foundation - 0 views

  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control and Networks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills.
  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control and Networks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills.
MiamiOH OARS

Ecology and Evolution of Infectious Diseases | NSF - National Science Foundation - 0 views

  •  
    The Ecology and Evolution of Infectious Diseases program supports research on the ecological, evolutionary, and socio-ecological principles and processes that influence the transmission dynamics of infectious diseases. The central theme of submitted projects must be quantitative or computational understanding of pathogen transmission dynamics. The intent is discovery of principles of infectious disease transmission and testing mathematical or computational models that elucidate infectious disease systems. Projects should be broad, interdisciplinary efforts that go beyond the scope of typical studies. They should focus on the determinants and interactions of transmission among humans, non-human animals, and/or plants. This includes, for example, the spread of pathogens; the influence of environmental factors such as climate; the population dynamics and genetics of reservoir species or hosts; the cultural, social, behavioral, and economic dimensions of disease transmission. Research may be on zoonotic, environmentally-borne, vector-borne, or enteric diseases of either terrestrial or freshwater systems and organisms, including diseases of animals and plants, at any scale from specific pathogens to inclusive environmental systems. Proposals for research on disease systems of public health concern to developing countries are strongly encouraged, as are disease systems of concern in agricultural systems. Investigators are encouraged to develop the appropriate multidisciplinary team, including for example, modelers, bioinformaticians, genomics researchers, social scientists, economists, epidemiologists, entomologists, parasitologists, microbiologists, bacteriologists, virologists, pathologists or veterinarians, with the goal of integrating knowledge across disciplines to enhance our ability to predict and control infectious diseases.
  •  
    The Ecology and Evolution of Infectious Diseases program supports research on the ecological, evolutionary, and socio-ecological principles and processes that influence the transmission dynamics of infectious diseases. The central theme of submitted projects must be quantitative or computational understanding of pathogen transmission dynamics. The intent is discovery of principles of infectious disease transmission and testing mathematical or computational models that elucidate infectious disease systems. Projects should be broad, interdisciplinary efforts that go beyond the scope of typical studies. They should focus on the determinants and interactions of transmission among humans, non-human animals, and/or plants. This includes, for example, the spread of pathogens; the influence of environmental factors such as climate; the population dynamics and genetics of reservoir species or hosts; the cultural, social, behavioral, and economic dimensions of disease transmission. Research may be on zoonotic, environmentally-borne, vector-borne, or enteric diseases of either terrestrial or freshwater systems and organisms, including diseases of animals and plants, at any scale from specific pathogens to inclusive environmental systems. Proposals for research on disease systems of public health concern to developing countries are strongly encouraged, as are disease systems of concern in agricultural systems. Investigators are encouraged to develop the appropriate multidisciplinary team, including for example, modelers, bioinformaticians, genomics researchers, social scientists, economists, epidemiologists, entomologists, parasitologists, microbiologists, bacteriologists, virologists, pathologists or veterinarians, with the goal of integrating knowledge across disciplines to enhance our ability to predict and control infectious diseases.
MiamiOH OARS

General & Age-Related Disabilities Engineering (GARDE) | NSF - National Science Foundation - 0 views

  •  
    The General & Age Related Disabilities Engineering (GARDE) program supports fundamental engineering research that will lead to the development of new technologies, devices, or software that improve the quality of life of persons with disabilities. Research may be supported that is directed toward the characterization, restoration, and/or substitution of human functional ability or cognition, or to the interaction of persons with disabilities and their environment. Areas of particular interest are disability-related research in neuroengineering and rehabilitation robotics. Emphasis is placed on significant advancement of fundamental engineering knowledge that facilitates transformative outcomes. We discourage applications that propose incremental improvements. Applicants are encouraged to contact the Program Director prior to submitting a proposal.
  •  
    The General & Age Related Disabilities Engineering (GARDE) program supports fundamental engineering research that will lead to the development of new technologies, devices, or software that improve the quality of life of persons with disabilities. Research may be supported that is directed toward the characterization, restoration, and/or substitution of human functional ability or cognition, or to the interaction of persons with disabilities and their environment. Areas of particular interest are disability-related research in neuroengineering and rehabilitation robotics. Emphasis is placed on significant advancement of fundamental engineering knowledge that facilitates transformative outcomes. We discourage applications that propose incremental improvements. Applicants are encouraged to contact the Program Director prior to submitting a proposal.
MiamiOH OARS

Network for Computational Nanotechnology (NCN) | NSF - National Science Foundation - 0 views

  •  
    The goals of the Network for Computational Nanotechnology (NCN) are to: 1) accelerate the transformation of nanoscience to nanotechnology through the integration of simulation with experimentation; 2) engage an ever-larger and more diverse cyber community sharing novel, high-quality nanoscale computation and simulation research and educational resources; 3) develop open-access, open-source software to stimulate data sharing; and 4) inspire and educate the next-generation workforce.  The NCN consists of a stand-alone Cyber Platform, which provides computation, simulation, and education services to over 330,000 researchers, educators, students, and industry members of the nanoscience and engineering community annually worldwide; and Nodes, which develop compelling new computational and simulation tools to disseminate through Cyber Platform (nanoHUB.org) and cultivate communities of users in emerging areas of nanoscale science and engineering.
  •  
    The goals of the Network for Computational Nanotechnology (NCN) are to: 1) accelerate the transformation of nanoscience to nanotechnology through the integration of simulation with experimentation; 2) engage an ever-larger and more diverse cyber community sharing novel, high-quality nanoscale computation and simulation research and educational resources; 3) develop open-access, open-source software to stimulate data sharing; and 4) inspire and educate the next-generation workforce.  The NCN consists of a stand-alone Cyber Platform, which provides computation, simulation, and education services to over 330,000 researchers, educators, students, and industry members of the nanoscience and engineering community annually worldwide; and Nodes, which develop compelling new computational and simulation tools to disseminate through Cyber Platform (nanoHUB.org) and cultivate communities of users in emerging areas of nanoscale science and engineering.
MiamiOH OARS

Biophotonics | NSF - National Science Foundation - 0 views

  •  
    The goal of the Biophotonics program is to explore the research frontiers in photonics principles, engineering and technology that are relevant for critical problems in fields of medicine, biology and biotechnology.  Fundamental engineering research and innovation in photonics is required to lay the foundations for new technologies beyond those that are mature and ready for application in medical diagnostics and therapies.  Advances are needed in nanophotonics, optogenetics, contrast and targeting agents, ultra-thin probes, wide field imaging, and rapid biomarker screening. Low cost and minimally invasive medical diagnostics and therapies are key motivating application goals.
  •  
    The goal of the Biophotonics program is to explore the research frontiers in photonics principles, engineering and technology that are relevant for critical problems in fields of medicine, biology and biotechnology.  Fundamental engineering research and innovation in photonics is required to lay the foundations for new technologies beyond those that are mature and ready for application in medical diagnostics and therapies.  Advances are needed in nanophotonics, optogenetics, contrast and targeting agents, ultra-thin probes, wide field imaging, and rapid biomarker screening. Low cost and minimally invasive medical diagnostics and therapies are key motivating application goals.
MiamiOH OARS

Computer and Network Systems (CNS): Core Programs | NSF - National Science Foundation - 0 views

  •  
    CISE's Division of Computer and Network Systems (CNS) supports research and education projects that develop new knowledge in two core programs: -Computer Systems Research (CSR) program; -Networking Technology and Systems (NeTS) program.
MiamiOH OARS

NSF/Intel Partnership on Information-Centric Networking in Wireless Edge Networks | NSF... - 0 views

  •  
    Next-generation wireless networks, utilizing a wide swath of wireless spectrum and an array of novel technologies in the wired and wireless domains, are on the cusp of unleashing a broadband revolution with promised peak bit rates of tens of gigabits per second and latencies of less than a millisecond. Such innovations will make possible a new set of applications such as autonomous vehicles, industrial robotics, tactile Internet applications, virtual and augmented reality, and dense Internet of Things (IoT) deployments. A key requirement of these applications is fast information response time that is invariant as a function of the bandwidth demanded, users/devices supported, and data generated, of which low-latency wireless access time is only one component. Intrinsic security, seamless mobility, scalable content caching, and discovery/distribution services are also essential for such applications. This solicitation seeks unique data network architectures featuring an information plane using an Information-Centric Networking (ICN) approach and addressing discovery, movement, delivery, management, and protection of information within a network, along with the abstraction of an underlying communication plane creating opportunities for new efficiencies and optimizations across communications technologies that could also address latency and scale requirements.
MiamiOH OARS

Platforms for Advanced Wireless Research (PAWR): Establishing the PAWR Project Office (... - 0 views

  •  
    The Platforms for Advanced Wireless Research (PAWR) program aims to support advanced wireless research platforms conceived by the U.S. academic and industrial wireless research community. PAWR will enable experimental exploration of robust new wireless devices, communication techniques, networks, systems, and services that will revolutionize the nation's wireless ecosystem, thereby enhancing broadband connectivity, leveraging the emerging Internet of Things (IoT), and sustaining US leadership and economic competitiveness for decades to come.
MiamiOH OARS

Advanced Research and Development of Mission-Focused Analytics for a Decision Advantage... - 0 views

  •  
    This Broad Agency Announcement (BAA) seeks to provide research and development for forming a revolutionary approach to information fusion and analysis by leveraging service-oriented architecture, open standards, and cutting-edge fusion and analytical algorithms to provide real-time (or near real-time) intelligence for decision makers. This BAA shall research and develop novel techniques to assist users with discovering the golden nuggets in the data - potential approaches include fusing diverse data sources, filtering noise, and leveraging pattern learning to derive patterns of life. Further, technical capabilities developed under this BAA will minimize user time spent gathering data and reporting data, while preserving and providing more time for analysis. This will be accomplished through several means to include a data framework that can easily and quickly connect to sundry data sources, a rich, intuitive personalized workspace and experience, a variety of user-defined visualization displays, machine learning to assist and automate mundane tasks, and a custom report generation tool.
MiamiOH OARS

Innovative Cross-Domain Cyber Reactive Information Sharing (ICCyRIS) - Federal Business... - 0 views

  •  
    This BAA focuses on developing new technologies to allow secure data sharing; trusted computing; smart routing; cyber defense; Multi-Level Security (MLS) trust at the tactical edge; and a comprehensive, multi-security domain, user-defined operational picture to effectively and efficiently improve the state-of-the-art for defense enterprise, cloud, and mobile/tactical computing/operations.
MiamiOH OARS

Science and Technology New Initiatives - Federal Business Opportunities: Opportunities - 0 views

  •  
    The focus of this BAA is on discovering and accelerating innovations through three broad technical approaches that contribute to DTRA overarching research, development, technology, and engineering (RDT&E) goals. Analytic investigations; Innovative capability research and development; and Mission-oriented experiments. Projects funded under this BAA will be analytic investigations, capability developments and/or experiments at Technology Readiness Levels (TRL) 2 through 6.
« First ‹ Previous 741 - 760 Next › Last »
Showing 20 items per page