Skip to main content

Home/ OARS funding Biomed/ Group items tagged environmental

Rss Feed Group items tagged

MiamiOH OARS

Interfacial Processes and Thermodynamics - 0 views

  •  
    he goal of the Interfacial Processes and Thermodynamics (IPT) program is to advance fundamental molecular engineering at interfaces, especially as applied to the nano-processing of soft materials.  The program views fundamental interfacial interactions, molecular transport at interfaces, and molecular thermodynamics as integral to developing new approaches for solving critical engineering needs that face society. Molecules at interfaces, with functional interfacial properties, are of special interest, as these molecules have potential use in important research areas, such as adhesion and advanced manufacturing/fabrication.  These interfacial molecules may also have biomolecular functions at the micro- and nano-scale, where the biomolecular functionalities may be re-directed toward engineering solutions. One new area of interest is the adhesion between unlike materials, or adhesion in adverse environments, with particular emphasis on applying strategies arising from nature.  Research supported in these fundamental areas should lead to more economical and environmentally benign processing, improved water quality, and novel functional materials for sensors, in industrial, environmental, and biomedical settings.  Nanotechnology plays a critical role in most of these new areas.
MiamiOH OARS

PAR-15-085: Predictive Multiscale Models for Biomedical, Biological, Behavioral, Enviro... - 0 views

  •  
    The goal of this interagency funding opportunity announcement (FOA) is to support the development of multiscale models to accelerate biological, biomedical, behavioral, environmental and clinical research. The NIH, ARO, DOE, FDA, NASA, NSF, and ONR recognize that in order to efficiently and effectively address the challenges of understanding multiscale biological and behavioral systems, researchers will need predictive, computational models that encompass multiple biological and behavioral scales.  This FOA supports the development of non-standard modeling methods and experimental approaches to facilitate multiscale modeling, and active participation in community-driven activities through the Multiscale Modeling (MSM) Consortium, www.imagwiki.org.
MiamiOH OARS

Geobiology and Low-Temperature Geochemistry (nsf15559) - 0 views

  •  
    The Geobiology and Low-Temperature Geochemistry Program focuses on geochemical processes in terrestrial Earth's surface environmental systems, as well as the interaction of geochemical and biological processes. The program supports field, laboratory, theoretical, and modeling studies of these processes and related mechanisms at all spatial and temporal scales. Studies may address: 1) inorganic and/or organic geochemical processes occurring at or near the Earth's surface now and in the past, and across the broad spectrum of interfaces ranging in scale from planetary and regional to mineral-surface and supramolecular; 2) the role of life in the transformation and evolution of Earth's geochemical cycles; 3) surficial chemical and biogeochemical systems and cycles, including their modification through environmental change and human activities; 4) low-temperature aqueous geochemical processes; 5) mineralogy and chemistry of earth materials; 6) geomicrobiology and biomineralization processes; and 7) medical mineralogy and geochemistry. The Program encourages research that focuses on geochemical processes as they are coupled with physical and biological processes in the critical zone. The Program also supports work on the development of tools, methods, and models for the advancement of low-temperature geochemistry and geobiology. The Geobiology and Low-Temperature Geochemistry Program is interested in supporting transformational and cutting-edge research. The Program is highly interdisciplinary and interfaces with other programs within the Earth Surface Section and with programs in biology, chemistry and engineering.
MiamiOH OARS

Human Health Exposure Analysis Resource: Data Repository, Analysis and Science Center (... - 0 views

  •  
    The NIEHS and partnering Institutes and Centers are establishing an infrastructure, the Human Health Exposure Analysis Resource (HHEAR) as a continuation of the Children's Health Exposure Analysis Resource (CHEAR). The goal of this consortium is to provide the research community access to laboratory and statistical analyses to add or expand the inclusion of environmental exposures in their research and to make that data publicly available as a means to improve our knowledge of the comprehensive effects of environmental exposures on human health throughout the life course. This FOA solicits the Data Center. The Data Center will provide intellectual and logistical support for the maintenance, integration, analysis, interpretation, curation, and reuse of data generated by HHEAR in support of extramural research projects. The Data Center will build and manage an exposure data repository and associated data science resources, including a public access Data Portal, a Data Submission and Review Portal, and an ontology and associated standardized data structure. In addition, the Data Center will provide statistical, analytical, and informatic support for HHEAR components and studies using the HHEAR infrastructure. The ultimate goal is maximizing potential use and impact of exposure data in human health studies.
MiamiOH OARS

Human Health Exposure Analysis Resource: Coordinating Center (U24 Clinical Trial Not Al... - 0 views

  •  
    The NIEHS and partnering Institutes and Centers are establishing an infrastructure, the Human Health Exposure Analysis Resource (HHEAR) as a continuation of the Children's Health Exposure Analysis Resource (CHEAR). The goal of this consortium is to provide the research community access to laboratory and statistical analyses to add or expand the inclusion of environmental exposures in their research and to make that data publicly available as a means to improve our knowledge of the comprehensive effects of environmental exposures on human health throughout the life course. This FOA solicits the HHEAR Coordinating Center (U24) that will serve as the administrative hub and external access point for HHEAR, managing and tracking the flow of projects, materials, and analyses between HHEAR units and participating investigators. In addition, the coordinating center will support administrative functions such as convening HHEAR Steering and Executive Committee meetings, and organizing education, outreach, and publicity activities.
MiamiOH OARS

Functional RNA Modifications Environment and Disease (FRAMED) (R01 Clinical Trial Not A... - 0 views

  •  
    Chemical modifications of protein, DNA and RNA nucleoside moieties play critical roles in regulating gene expression. Emerging evidence suggests RNA modifications have substantive roles in multiple basic biological processes. Epitranscriptomics can be defined as the aggregate suite of functional biochemical modifications to the transcriptome within a cell. Recent studies in yeast, Drosophila, rodent and human models demonstrate that stressors can induce RNA modifications, with specific reprogramming of some regulatory RNAs. The NIEHS seeks to solicit innovative, mechanistic research applications that are focused on how environmental exposures are associated and involved with the functional activities of RNA modifications and pathways that may be modified or misregulated, associated with adverse health outcomes and/or be useful as biomarkers of exposure and/or exposure-induced pathologies. The study of functional chemical RNA modification has identified important emerging roles in cellular regulation and gene expression. However, the impact of environmental exposures on functional RNA modifications has been relatively understudied and may present a new mechanism for enhanced understanding the relationships between exposures and the development of complex human diseases. The NIEHS will use the R01 mechanism to support hypothesis driven research using approaches that incorporate principles of toxicology with RNA modification biological and/or chemical expertise and utilizes state of the art technologies.
MiamiOH OARS

Atmospheric System Research (ASR) - 0 views

  •  
    The Atmospheric SystemResearch (ASR) program in the Climate and Environmental Sciences Division(CESD), Biological and Environmental Research (BER) of the Office of Science(SC), U.S. Department of Energy (DOE), supports research on key cloud, aerosol,precipitation, and radiative transfer processes that affect the Earth's radiative balance and hydrological cycle,especially processes that limit the predictive ability of regional and globalmodels. ASRhereby announces its interest in research grant applications for observational,data analysis, and/or modeling studies that use observations supported by CESD,including the Atmospheric Radiation Measurement (ARM) scientific user facilityand the ASR program to improve understanding and model representation of aerosol processes at ARM sites; warm boundary-layerprocesses; convective cloud processes; and Southern Ocean cloud and aerosolprocesses.
MiamiOH OARS

Terrestrial Ecosystem Science - 0 views

  •  
    The Terrestrial Ecosystem Science (TES) program in the Climate and Environmental Sciences Division (CESD), Biological and Environmental Research (BER) program of the Office of Science (SC), U.S. Department of Energy (DOE), announces its interest in receiving research applications seeking to improve the understanding and representation of terrestrial ecosystems in ways that advance Earth system model parameterizations and capabilities. This FOA will consider applications that utilize and couple measurements, experiments, modeling and/or synthesis of terrestrial ecosystems across a continuum from the subsurface to the top of the vegetated canopy and from molecular to global scales. TES hereby announces its interest in grant applications that advance the understanding and predictive representation of terrestrial ecosystem in the following areas: 1) Interactions and feedbacks between aboveground and belowground processes; and, 2) The role of disturbance at the terrestrial-aquatic interface. Applicants are required to pose their research applications in the context of representing terrestrial ecosystem processes in ways that improve the predictability of Earth system models.
MiamiOH OARS

Catalysis - 0 views

  •  
    The Catalysis program is part of the Chemical Process Systems cluster, which also includes: 1) the Electrochemical Systems program; 2) the Interfacial Engineering program; and 3) the Process Systems, Reaction Engineering, and Molecular Thermodynamics program. The goals of the Catalysis program are to increase fundamental understanding in catalytic engineering science and to advance the development of catalytic materials and reactions that are beneficial to society. Research in this program should focus on new concepts for catalytic materials and reactions, utilizing synthetic, theoretical, and experimental approaches. Target applications include fuels, specialty and bulk chemicals, environmental catalysis, biomass conversion to fuels and chemicals, conversion of greenhouse gases, and generation of solar hydrogen, as well as efficient routes to energy utilization. Heterogeneous catalysis represents the main thrust of the program. Proposals related to both gas-solid and liquid-solid heterogeneous catalysis are welcome, as are proposals that incorporate concepts from homogeneous catalysis. Topic areas that are of particular interest include: · Renewable energy-related catalysis with applications in electrocatalysis, photocatalysis, and catalytic conversion of biomass-derived chemicals. Catalysis aimed at closing the carbon cycle (especially conversion of CO2, methane, and natural gas to fuels and chemical intermediates). · Catalytic alternatives to traditionally non-catalytic reaction processes, as well as new catalyst designs for established catalytic processes. · Environmental catalysis (including energy-efficient and green routes to fuels and chemicals). ·
MiamiOH OARS

Special Research Grants Program - Aquaculture Research - 0 views

  •  
    The purpose of the Aquaculture Research program is to support the development of an environmentally and economically sustainable aquaculture industry in the U.S. and generate new science-based information and innovation to address industry constraints. Over the long term, results of projects supported by this program may help improve the profitability of the U.S. aquaculture industry, reduce the U.S. trade deficit, increase domestic food security, provide markets for U.S.-produced grain products, increase domestic aquaculture business investment opportunities, and provide more jobs for rural and coastal America. The Aquaculture Research program will fund projects that directly address major constraints to the U.S. aquaculture industry and focus on one or more of the following program priorities: (1) genetics of commercial aquaculture species; (2) critical disease issues impacting aquaculture species; (3) design of environmentally and economically sustainable aquaculture production systems; and (4) economic research for increasing aquaculture profitability.
MiamiOH OARS

RFA-ES-20-004: Optimizing Natural Systems for Remediation: Utilizing Innovative Materia... - 0 views

  •  
    The National Institute of Environmental Health Sciences (NIEHS) invites qualified investigators from domestic institutions of higher education to apply to the Superfund Research Program (SRP) R01 Individual Research Project grant program. The mission of the NIEHS is to discover how the environment affects people in order to promote healthier lives. The NIEHS Superfund Research Program (SRP) (http://www.niehs.nih.gov/research/supported/srp/) was established under the Superfund Amendment Reauthorization Act (SARA) Section 311(a), which authorizes NIEHS to implement a university-based program of basic research for the development of: 1) advanced techniques for the detection, assessment, and evaluation of the effect of hazardous substances on human health; 2) methods to assess the risks to human health presented by hazardous substances; 3) methods and technologies to detect hazardous substances in the environment; and 4) basic biological, chemical, and physical methods to reduce the amount and/or toxicity of hazardous substances. SRP's broad scope, as dictated by the SARA mandates, allows NIEHS to support scientific research to address the wide array of scientific uncertainties facing the national Superfund program utilizing biomedical as well as environmental science and engineering approaches. Research supported by the SRP uses mechanistic science as a foundation and, in keeping with the broad research themes of the program mandates, the SRP promotes an interdisciplinary approach to develop solutions for the safe management of hazardous substances with the ultimate goal of improving public health.
MiamiOH OARS

Signals in the Soil - 0 views

  •  
    The National Science Foundation (NSF) Directorates for Engineering (ENG) and Geosciences (GEO), the Divisions of Integrative Organismal Systems (IOS) and Environmental Biology (DEB), in the Directorate for Biological Sciences (BIO), the Division of Computer and Network Systems in the Directorate Computer and Information Science and Engineering (CISE/CNS), and the Division of Chemistry (CHE) in the Directorate for Mathematical and Physical Sciences, in collaboration with the US Department of Agriculture National Institute of Food and Agriculture (USDA NIFA) encourage convergent research that transforms existing capabilities in understanding dynamic soil processes, including soil formation, through advances in sensor systems and modeling. The Signals in the Soil (SitS) program fosters collaboration among the two partner agencies and the researchers they support by combining resources and funding for the most innovative and high-impact projects that address their respective missions. To make transformative advances in our understanding of soils, multiple disciplines must converge to produce environmentally-benign novel sensing systems with multiple modalities that can adapt to different environments and collect and transmit data for a wide range of biological, chemical, and physical parameters. Effective integration of sensor data will be key for achieving a better understanding of signaling interactions among plants, animals, microbes, the soil matrix, and aqueous and gaseous components. New sensor networks have the potential to inform models in novel ways, to radically change how data is obtained from various natural and managed (both urban and rural) ecosystems, and to better inform the communities that directly rely on soils for sustenance and livelihood.
MiamiOH OARS

Signals in the Soil (SitS) (nsf20548) | NSF - National Science Foundation - 0 views

  •  
    The National Science Foundation (NSF) Directorates for Engineering (ENG) and Geosciences (GEO), the Divisions of Integrative Organismal Systems (IOS) and Environmental Biology (DEB), in the Directorate for Biological Sciences (BIO), the Division of Computer and Network Systems in the Directorate Computer and Information Science and Engineering (CISE/CNS), and the Division of Chemistry (CHE) in the Directorate for Mathematical and Physical Sciences, in collaboration with the US Department of Agriculture National Institute of Food and Agriculture (USDA NIFA) encourage convergent research that transforms existing capabilities in understanding dynamic soil processes, including soil formation, through advances in sensor systems and modeling. The Signals in the Soil (SitS) program fosters collaboration among the two partner agencies and the researchers they support by combining resources and funding for the most innovative and high-impact projects that address their respective missions. To make transformative advances in our understanding of soils, multiple disciplines must converge to produce environmentally-benign novel sensing systems with multiple modalities that can adapt to different environments and collect and transmit data for a wide range of biological, chemical, and physical parameters. Effective integration of sensor data will be key for achieving a better understanding of signaling interactions among plants, animals, microbes, the soil matrix, and aqueous and gaseous components. New sensor networks have the potential to inform models in novel ways, to radically change how data is obtained from various natural and managed (both urban and rural) ecosystems, and to better inform the communities that directly rely on soils for sustenance and livelihood.
MiamiOH OARS

Early Career: Assessment Tools for Biotechnology Products - 0 views

  •  
    The United States Environmental Protection Agency (EPA), as part of its Science to Achieve Results (STAR) program, is seeking applications proposing research to support the development of improved science-based human health and environmental risk assessments of new biotechnology products, including those developed through synthetic biology, genome editing, and metabolic engineering.
MiamiOH OARS

Population-Based Model Organism Research for G x E Exploration in Complex Disease Outco... - 0 views

  •  
    This Funding Opportunity Announcement (FOA) will support research using population-based model organism resources for environmental health science and toxicology questions. This FOA is particularly interested in the interplay between environment, genetics, and epigenetics and the identification and understanding of host susceptibility to environmental exposures, relevant to human disease outcomes.
MiamiOH OARS

2018 SERC Seed Grant Solicitation issued | Subsurface Energy Resource Center - 0 views

  •  
    This could include, but is not limited to: (a) alternative and clean energy sources; (b) environmental and social issues as related to specific or broader energy and resource management issues; (c) economic, environmental, and social costs/benefits of energy development (alternative and fossil fuel); (d) hazard and risk assessment of different methods of energy production on various endpoints/receptors; (e) development of frameworks for managing energy development; and (f) restoration/reclamation of lands damaged by energy extraction
MiamiOH OARS

Division of Environmental Biology (core programs) (DEB) | NSF - National Science Founda... - 0 views

  •  
    The Division of Environmental Biology (DEB) supports fundamental research on populations, species, communities, and ecosystems. Scientific emphases range across many evolutionary and ecological patterns and processes at all spatial and temporal scales. Areas of research include biodiversity, phylogenetic systematics, molecular evolution, life history evolution, natural selection, ecology, biogeography, ecosystem structure, function and services, conservation biology, global change, and biogeochemical cycles. Research on organismal origins, functions, relationships, interactions, and evolutionary history may incorporate field, laboratory, or collection-based approaches; observational or manipulative experiments; synthesis activities; as well as theoretical approaches involving analytical, statistical, or computational modeling.
MiamiOH OARS

Natural Experiments of Policy and Built Environment Impact on Diabetes Risk - 0 views

  •  
    This FOA has two components, A and B. Component A: To support a 5-year multi-center research network of innovative, non-health system-based, natural experiments approaches to alter the diabetogenic characteristics of US communities. Priority areas include population-level approaches to the promotion of healthy eating and active living by evaluating the impact of environmental and policy interventions on population-level risk factors for diabetes. Component B: To fund a Central Coordinating Center (CCC) to provide organizational, logistic and communication support to enhance the efficiency, productivity, and impact of the Natural Experiments research centers that are funded as part of Component A.
  •  
    This FOA has two components, A and B. Component A: To support a 5-year multi-center research network of innovative, non-health system-based, natural experiments approaches to alter the diabetogenic characteristics of US communities. Priority areas include population-level approaches to the promotion of healthy eating and active living by evaluating the impact of environmental and policy interventions on population-level risk factors for diabetes. Component B: To fund a Central Coordinating Center (CCC) to provide organizational, logistic and communication support to enhance the efficiency, productivity, and impact of the Natural Experiments research centers that are funded as part of Component A.
MiamiOH OARS

Particulate and Multiphase Processes | NSF - National Science Foundation - 0 views

  •  
    The goal of the Particulate and Multiphase Processes (PMP) program is to support fundamental research on physico-chemical phenomena that govern particulate and multiphase systems, including flow of suspensions, drops and bubbles, granular and granular-fluid flows, behavior of micro- and nanostructured fluids, and self-assembly/directed-assembly processes that involve particulates.  The program encourages transformative research to improve our basic understanding of particulate and multiphase processes with emphasis on research that demonstrates how particle-scale phenomena affect the behavior and dynamics of larger-scale systems.  Although proposed research should focus on fundamentals, a clear vision is required that anticipates how results could benefit important applications in advanced manufacturing, energy harvesting, transport in biological systems, biotechnology, or environmental sustainability.  Collaborative and interdisciplinary proposals are encouraged, especially those that involve a combination of experiment with theory or modeling.
  •  
    The goal of the Particulate and Multiphase Processes (PMP) program is to support fundamental research on physico-chemical phenomena that govern particulate and multiphase systems, including flow of suspensions, drops and bubbles, granular and granular-fluid flows, behavior of micro- and nanostructured fluids, and self-assembly/directed-assembly processes that involve particulates.  The program encourages transformative research to improve our basic understanding of particulate and multiphase processes with emphasis on research that demonstrates how particle-scale phenomena affect the behavior and dynamics of larger-scale systems.  Although proposed research should focus on fundamentals, a clear vision is required that anticipates how results could benefit important applications in advanced manufacturing, energy harvesting, transport in biological systems, biotechnology, or environmental sustainability.  Collaborative and interdisciplinary proposals are encouraged, especially those that involve a combination of experiment with theory or modeling.
MiamiOH OARS

Biosystems Design to Enable Next-Generation Biofuels and Bioproducts - 0 views

  •  
    Biological and Environmental Research (BER) of the Office of Science (SC), U.S. Department of Energy (DOE) hereby announces its interest in receiving applications for research of interest to the Genomic Science Program (http://genomicscience.energy.gov) in the following research areas: a) Integrating large-scale systems biology data to model, design, and engineer microbial systems for the production of biofuels and bioproducts: Interdisciplinary approaches to develop innovative, high-throughput modeling, genome-wide design and editing, and engineering technologies for a broad range of microbes relevant for the production of biofuels and bioproducts from biomass. b) Plant systems design for bioenergy: To develop novel technologies for genome-scale engineering to re-design bioenergy crops that can grow in marginal environments while producing high yield of biomass that can be easily converted to biofuels and bioproducts. Applications should include strategies to address biocontainment, minimizing risks of potential release of engineered organisms into the environment or other unintended outcomes.
  •  
    Biological and Environmental Research (BER) of the Office of Science (SC), U.S. Department of Energy (DOE) hereby announces its interest in receiving applications for research of interest to the Genomic Science Program (http://genomicscience.energy.gov) in the following research areas: a) Integrating large-scale systems biology data to model, design, and engineer microbial systems for the production of biofuels and bioproducts: Interdisciplinary approaches to develop innovative, high-throughput modeling, genome-wide design and editing, and engineering technologies for a broad range of microbes relevant for the production of biofuels and bioproducts from biomass. b) Plant systems design for bioenergy: To develop novel technologies for genome-scale engineering to re-design bioenergy crops that can grow in marginal environments while producing high yield of biomass that can be easily converted to biofuels and bioproducts. Applications should include strategies to address biocontainment, minimizing risks of potential release of engineered organisms into the environment or other unintended outcomes.
« First ‹ Previous 41 - 60 of 216 Next › Last »
Showing 20 items per page