Skip to main content

Home/ Neuropsychology/ Group items tagged neural

Rss Feed Group items tagged

Ruth Howard

You won't find consciousness in the brain - opinion - 07 January 2010 - New Scientist - 0 views

  • MOST neuroscientists, philosophers of the mind and science journalists feel the time is near when we will be able to explain the mystery of human consciousness in terms of the activity of the brain. There is, however, a vocal minority of neurosceptics who contest this orthodoxy.
  • This may well happen, but my argument is not about technical, probably temporary, limitations.
  • It is about the deep philosophical confusion embedded in the assumption that if you can correlate neural activity with consciousness, then you have demonstrated they are one and the same thing, and that a physical science such as neurophysiology is able to show what consciousness truly is.
  • ...10 more annotations...
  • While neural activity of a certain kind is a necessary condition for every manifestation of consciousness, from the lightest sensation to the most exquisitely constructed sense of self, it is neither a sufficient condition of it, nor, still less, is it identical with it.
  • Many features of ordinary consciousness also resist neurological explanation.
  • There is nothing in the convergence or coherence of neural pathways that gives us this "merging without mushing", this ability to see things as both whole and separate.
  • This concerns the disjunction between the objects of science and the contents of consciousness. Science begins when we escape our subjective, first-person experiences into objective measurement, and reach towards a vantage point the philosopher Thomas Nagel called "the view from nowhere".
  • Thus measurement takes us further from experience and the phenomena of subjective consciousness to a realm where things are described in abstract but quantitative terms. To do its work, physical science has to discard "secondary qualities", such as colour, warmth or cold, taste - in short, the basic contents of consciousness. For the physicist then, light is not in itself bright or colourful, it is a mixture of vibrations in an electromagnetic field of different frequencies. The material world, far from being the noisy, colourful, smelly place we live in, is colourless, silent, full of odourless molecules, atoms, particles, whose nature and behaviour is best described mathematically. In short, physical science is about the marginalisation, or even the disappearance, of phenomenal appearance/qualia, the redness of red wine or the smell of a smelly dog.
  • Consciousness, on the other hand, is all about phenomenal appearances/qualia.
  • There is nothing in physical science that can explain why a physical object such as a brain should ascribe appearances/qualia to material objects that do not intrinsically have them.
  • Then their "appearings" will depend on the viewpoint of the conscious observer.
  • Material objects require consciousness in order to "appear".
  • Our failure to explain consciousness in terms of neural activity inside the brain inside the skull is not due to technical limitations which can be overcome. It is due to the self-contradictory nature of the task, of which the failure to explain "aboutness", the unity and multiplicity of our awareness, the explicit presence of the past, the initiation of actions, the construction of self are just symptoms.
David McGavock

Scientific Understanding of Consciousness - 0 views

  • During the past 20 years or so, biological sciences have advanced to the point that scientists have begun researching biological mechanisms of brain function and suggesting some reasonably well-founded hypotheses for consciousness. Leading the way in these pioneering efforts, in my judgment, have been:   Gerald Edelman with his hypothesis of the Dynamic Core, Antonio Damasio with his concepts of  Protoself, Core Self, Autobiographical Self, Core Consciousness and Extended Consciousness, Joseph LeDoux and his emphasis on the intricacies of synapses and the emotional brain,
  • Rudolfo Llinás and his researches into ~40 Hz oscillations and synchronization, György Buzsáki with his discussion and exploration of neural mechanisms related to oscillation and synchronization in the neocortex and hippocampus for perception and memory, Joaquín Fuster, the world’s preeminent expert on the frontal lobes, and his concept of the "perception-action cycle," Susan Greenfield's notion of "neuronal gestalts" as a way of conceptualizing a highly variable aggregation of neurons that is temporarily recruited around a triggering epicenter. I use the neuronal gestalts idea in my way of visualizing the functionality of the dynamic core of the thalamocortical system, Eric Kandel who has explored short-term and long-term memory,
  • The late Francis Crick with his collaborator Christof Koch who have pursued the neural correlate of consciousness (NCC), Michael Gazzaniga with the concept of the left hemisphere ‘interpreter’ unifying consciousness experience, Edmund Rolls and Gustavo Deco with their mathematical models of brain function using information theory approaches for biologically plausible neurodynamical modeling of cognitive phenomena corroborated by brain imaging studies, David LaBerge with his discussion of the thalamocortical circuit and attention, Alan Baddeley who continues to refine his model for working memory, Philosopher John Searle who endorses the idea that consciousness is an emergent property of neural networks.
  •  
    "My objective in this website has been to bring together salient features of these assorted interpretations by science experts into a synthesis of my own understanding of consciousness. I consider these statements and interpretations to be a framework on which to build a fuller understanding as further data, concepts and insights develop from ongoing research."
Tero Toivanen

Music and Intelligence | Boost Your IQ - 0 views

  • Studies indicate that early exposure to musical training helps a child’s brain reach its potential by generating neural connections utilized in abstract reasoning.
  • The reasoning skills required for a test in spatial reasoning are the same ones children use when they listen to music. Children use these reasoning skills to order the notes in their brain to form the melodies. Also, some concepts of math must be understood in order to understand music. Experts speculate that listening to music exercises the same parts of the brain that handle mathematics, logic, and higher level reasoning.
  • In 1997 a study involving three groups of preschoolers was conducted to determine the effect of music versus computer training on early childhood development.
  • ...9 more annotations...
  • The group that received the piano/keyboard training scored 34% higher on tests measuring spatial-temporal ability than either of the other two groups. These results suggest that music enhances certain higher brain functions, particularly abstract reasoning skills, required in math and science.
  • The use of music in training four and five year old children yielded the highest improvement in the ability to name body parts.
  • Although the three experimental groups displayed an increase in their ability to name body parts the music group exhibited the highest degree of improvement.
  • First grade students received extensive Kodaly training for seven months.
  • At the end of seven months the experimental group had higher reading scores than the control group, which did not receive any special treatment. Not only did the seven month instruction increase reading scores, but continued musical training proved to be beneficial. The experimental group continued to show higher reading scores with continued training.
  • Students who were involved in arts education achieved higher SAT scores. The longer students were involved in arts education, the higher the increase in SAT scores. This study also correlated arts education with higher scores in standardized tests, reading, English, history, citizenship, and geography.
  • The results indicated that students with a relatively lower socioeconomic status, that were exposed to arts education, had an advantage over those students without any arts education which was proportionally equal to the students with a relatively higher socioeconomic status and exposure to arts education.
  • Music exposure affects older students as well. Three groups of college students were exposed to either Mozart’s Sonata for Two Pianos, K448, a relaxation tape, or silence. The group exposed to the Mozart piece was the only group to achieve an increase on the spatial IQ test. Further studies revealed that neither dance music nor taped short stories produced an increase in spatial IQ similar to the Mozart piece. The increase in spatial IQ appears to be related to some unique aspects of the Mozart piece rather than music in general.
  • Music may not only be related to intelligence by its stimulation of the brain, but it may also increase intelligence by the type of attitudes, interests, and discipline it fosters in children.
  •  
    Studies indicate that early exposure to musical training helps a child's brain reach its potential by generating neural connections utilized in abstract reasoning.
Tero Toivanen

Adult Learning - Neuroscience - How to Train the Aging Brain - NYTimes.com - 1 views

  • One explanation for how this occurs comes from Deborah M. Burke, a professor of psychology at Pomona College in California. Dr. Burke has done research on “tots,” those tip-of-the-tongue times when you know something but can’t quite call it to mind. Dr. Burke’s research shows that such incidents increase in part because neural connections, which receive, process and transmit information, can weaken with disuse or age.
  • But she also finds that if you are primed with sounds that are close to those you’re trying to remember — say someone talks about cherry pits as you try to recall Brad Pitt’s name — suddenly the lost name will pop into mind. The similarity in sounds can jump-start a limp brain connection. (It also sometimes works to silently run through the alphabet until landing on the first letter of the wayward word.)
  • Recently, researchers have found even more positive news. The brain, as it traverses middle age, gets better at recognizing the central idea, the big picture. If kept in good shape, the brain can continue to build pathways that help its owner recognize patterns and, as a consequence, see significance and even solutions much faster than a young person can.
  • ...5 more annotations...
  • The trick is finding ways to keep brain connections in good condition and to grow more of them.
  • Educators say that, for adults, one way to nudge neurons in the right direction is to challenge the very assumptions they have worked so hard to accumulate while young. With a brain already full of well-connected pathways, adult learners should “jiggle their synapses a bit” by confronting thoughts that are contrary to their own, says Dr. Taylor, who is 66.
  • Teaching new facts should not be the focus of adult education, she says. Instead, continued brain development and a richer form of learning may require that you “bump up against people and ideas” that are different. In a history class, that might mean reading multiple viewpoints, and then prying open brain networks by reflecting on how what was learned has changed your view of the world.
  • Such stretching is exactly what scientists say best keeps a brain in tune: get out of the comfort zone to push and nourish your brain. Do anything from learning a foreign language to taking a different route to work.
  • “As adults we have these well-trodden paths in our synapses,” Dr. Taylor says. “We have to crack the cognitive egg and scramble it up. And if you learn something this way, when you think of it again you’ll have an overlay of complexity you didn’t have before — and help your brain keep developing as well.”
  •  
    Dr. Burke has done research on "tots," those tip-of-the-tongue times when you know something but can't quite call it to mind. Dr. Burke's research shows that such incidents increase in part because neural connections, which receive, process and transmit information, can weaken with disuse or age.
Tero Toivanen

Machine Translates Thoughts into Speech in Real Time - 0 views

  • Model of the brain-machine interface for real-time synthetic speech production.
  • Signals collected from an electrode in the speech motor cortex are amplified and sent wirelessly across the scalp as FM radio signals.
  • The Neuralynx System amplifies, converts, and sorts the signals. The neural decoder then translates the signals into speech commands for the speech synthesizer.
  • ...1 more annotation...
  • By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process takes about 50 milliseconds - the same amount of time for a non-paralyzed, neurologically intact person to speak their thoughts.
  •  
    Model of the brain-machine interface for real-time synthetic speech production.
Tero Toivanen

AK's Rambling Thoughts: Nerve Cells and Glial Cells: Redefining the Foundation of Intel... - 0 views

  • Glia are generally divided into two broad classes, microglia and macroglia. Microglia are part of the immune system, specialized macrophages, and probably don't participate in information handling. Macroglia are present in both the peripheral and central nervous systems, in different types.
  • Traditionally, there were four types of glia in the CNS: astrocytes, oligodendrocytes, ependymal cells, and radial glia. Of these, the one type that's most important to the developing revolution in our ideas are those cells called astrocytes.2 It turns out that there are at least two types of cell (at least) subsumed under this name.24, 25, 31, 32 One, which retains the name of astrocyte, takes up neurotransmitters released by neurons (and glial cells), aids in osmoregulation,10 controls circulation in the brain,1, 31 and generally appears to provide support for the neurons and other types of glia.
  • Although both NG2-glia and astrocytes extend processes to nodes of Ranvier in white matter ([refs]) and synapses in grey matter, their geometric relationship to these neuronal elements is different. Thus, although astrocytes and NG2-glia bear a superficial resemblance, they are distinguished by their different process arborizations. This will reflect fundamental differences in the way these two glial cell populations interact with other elements in the neural network.
  • ...13 more annotations...
  • Both types of glia are closely integrated with the nervous system, receiving information from action potentials via synapses22 (which, only a few years ago were thought to be limited to neurons), and returning control of neuron activity through release of neurotransmitters and other modulators. Both, then, demonstrate the potential for considerable intelligent activity, contributing to the overall intelligence of the brain.
  • Astrocytes probably (IMO) are limited, or mostly so, to maintaining the supplies of energy and necessary metabolites. They receive action potentials,3, 6 which allows them to closely and quickly monitor general activity and increase circulation in response, even before the neurons and NG2-glia have reduced their supply of ATP.21 They appear to be linked in a network among themselves,2, 5 allowing them to communicate their needs without interfering with the higher-level calculations of the brain.
  • NG2-glia appear to have several functions, but one of the most exciting things about them is that they seem to be able to fire action potentials.33 Their cell membranes, like those of the dendrites of neurons, have all the necessary channels and receptors to perform real-time electrical calculations in the same way as neural dendrites. They have also demonstrated the ability to learn through long term potentiation.
  • Dividing NG2-glia also retain the ability to fire action potentials, as well as receiving synaptic inputs from neurons.23 Presumably, they continue to perform their full function, including retaining any elements of long term potentiation or depression contained in their synapses.
  • Oligodendrocytes are responsible for the insulation of the axons, wrapping around approximately 1 mm of each of up to 50 axons within their reach, and forming the myelin sheath.
  • Although the precise type of neuron formed by maturing cells hasn't been determined, the very fact that cells of this type can change into neurons is very important. We actually don't know whether the cells that do this maturation are the same as those that perform neuron-like activities, there appear to be two separate types of NG2-glia, spiking and non-spiking.26 It may very well be that the "spiking" type have actually differentiated, while the "non-spiking" type may be doing the maturing. Of course, very few differentiated cell types remain capable of division, as even the "spiking" type do.
  • What's important about both dendrites and NG2-glia isn't so much their ability to propagate action potentials, as that their entire cell membranes are capable of "intelligent" manipulation of the voltage across it.
  • While there are many ion channels involved in controlling the voltage across the cell membrane, the only type we really need to worry about for action potentials is voltage-gated sodium channels. These are channels that sometimes allow sodium ions to pass through the cell membrane, which they will do because the concentration of sodium ions outside the cell is very much higher than inside. When and how much they open depends, among other things, on the voltage across the membrane.
  • A normal neuron will have a voltage of around -60 to -80mV (millivolts), in a direction that tends to push the sodium ions (which are positive) into the cell (the same direction as the concentration is pushing). When the voltage falls to around -55mV, the primary type of gate will open for a millisecond or so, after which it will close and rest for several milliseconds. It won't be able to open again until the voltage is somewhere between -55 and around -10mV. Meanwhile, the sodium current has caused the voltage to swing past zero to around +20mV.
  • When one part of the cell membrane is "depolarized" in this fashion, the voltage near it is also depressed. Thus, if the voltage is at zero at one point, it might be at -20mV 10 microns (μm) away, and -40mV 20μm away, and -60mV 30μm, and so on. Notice that somewhere between 20μm and 30μm, it has passed the threshold for the ion channels, which means that they are open, allowing a current that drives the voltage further down. This will produce a wave of voltage drop along the membrane, which is what the action potential is.
  • After the action potential has passed, and the gates have closed (see above), the voltage is recovered by diffusion of ions towards and away from the membrane, the opening of other gates (primarily potassium), and a set of pumps that push the ions back to their resting state. These pumps are mostly powered by the sodium gradient, except for the sodium/potassium pump that maintains it, which is powered by ATP.
  • the vast majority of calculation that goes into human intelligence takes place at the level of the network of dendrites and NG2-glia, with the whole system of axons, dendrites, and action potentials only carrying a tiny subset of the total information over long distances. This is especially important considering that the human brain has a much higher proportion of glial matter than our relatives.
  • This, in turn, suggests that our overall approach to understanding the brain has been far too axon centric, there needs to be a shift to a more membrane-centric approach to understanding how the brain creates intelligence.
  •  
    Our traditional idea of how the brain works is based on the neuron: it fires action potentials, which travel along the axon and, when the reach the synapses, the receiving neuron performs a calculation that results in the decision when (or whether) to fire its own action potential. Thus, the brain, from a thinking point of view, is viewed as a network of neurons each performing its own calculation. This view, which I'm going to call the axon-centric view, is simplistic in many ways, and two recent papers add to it, pointing up the ways in which the glial cells of the brain participate in ongoing calculation as well as performing their more traditional support functions.
Tero Toivanen

The five ages of the brain: Adolescence - life - 04 April 2009 - New Scientist - 0 views

  • Jay Giedd at the National Institute of Mental Health in Bethesda, Maryland, and his colleagues have followed the progress of nearly 400 children, scanning many of them every two years as they grew up. They found that adolescence brings waves of grey-matter pruning, with teens losing about 1 per cent of their grey matter every year until their early 20s (Nature Neuroscience, vol 2, p 861).
  • This cerebral pruning trims unused neural connections that were overproduced in the childhood growth spurt, starting with the more basic sensory and motor areas.
  • Among the last to mature is the dorsolateral prefrontal cortex at the very front of the frontal lobe. This area is involved in control of impulses, judgement and decision-making, which might explain some of the less-than-stellar decisions made by your average teen. This area also acts to control and process emotional information sent from the amygdala - the fight or flight centre of gut reactions - which may account for the mercurial tempers of adolescents.
  • ...5 more annotations...
  • These changes have both benefits and pitfalls. At this stage of life the brain is still childishly flexible, so we are still sponges for learning. On the other hand, the lack of impulse control may lead to risky behaviours such as drug and alcohol abuse, smoking and unprotected sex.
  • As grey matter is lost, though, the brain gains white matter
  • Substance abuse is particularly concerning, as brain imaging studies suggest that the motivation and reward circuitry in teen brains makes them almost hard-wired for addiction.
  • since drug abuse and stressful events - even a broken heart - have been linked to mood disorders later in life, this is the time when both are best avoided.
  • Making the most of this time is a matter of throwing all that teen energy into learning and new experiences - whether that means hitting the books, learning to express themselves through music or art, or exploring life by travelling the world.
  •  
    Jay Giedd at the National Institute of Mental Health in Bethesda, Maryland, and his colleagues have followed the progress of nearly 400 children, scanning many of them every two years as they grew up. They found that adolescence brings waves of grey-matter pruning, with teens losing about 1 per cent of their grey matter every year until their early 20s (Nature Neuroscience, vol 2, p 861).
Tero Toivanen

Cord blood cell transplantation provides improvement for severely brain-injured child - 0 views

  •  
    In three monthly injections, researchers transplanted neurally-committed, autologous cord blood derived cells tagged with iron oxide nanoparticles (SPIO) into the lateral cerebral ventricle of a 16-month old child with severe global hypoxic ischemic brain injury. The study is published in the current issue of Cell Medicine
Tero Toivanen

How the Brain Forms Categories | Neuroscience News - 0 views

  •  
    "...amazing skill of our brain to turn a wealth of sensory information into a number of defined categories and objects"
Tero Toivanen

Naps, Learning and REM : The Frontal Cortex - 0 views

  • Taking a nap without REM sleep also led to slightly better results. But a nap that included REM sleep resulted in nearly a 40 percent improvement over the pre-nap performance.
  • The study, published June 8 in The Proceedings of the National Academy of Sciences, found that those who had REM sleep took longer naps than those who napped without REM, but there was no correlation between total sleep time and improved performance. Only REM sleep helped.
  • Numerous studies have now demonstrated that REM sleep is an essential part of the learning process. Before you can know something, you have to dream about it.
  • ...2 more annotations...
  • The breakthrough came in 1972, when psychologist Jonathan Winson came up with a simple theory: The rabbit brain exhibited the same pattern of activity when it was scared and when it was dreaming because it was dreaming about being scared. The theta rhythm of sleep was just the sound of the mind processing information, sorting through the day's experiences and looking for any new knowledge that might be important for future survival. They were learning while dreaming, solving problems in their sleep.
  • Wilson began his experiment by training rats to run through mazes. While a rat was running through one of these labyrinths, Wilson measured clusters of neurons in the hippocampus with multiple electrodes surgically implanted in its brain. As he'd hypothesized, Wilson found that each maze produced its own pattern of neural firing. To figure out how dreams relate to experience, Wilson recorded input from these same electrodes while the rats were sleeping. The results were astonishing. Of the 45 rat dreams recorded by Wilson, 20 contained an exact replica of the maze they had run earlier that day. The REM sleep was recapitulating experience, allowing the animals to consolidate memory and learn new things. Wilson's lab has since extended these results, demonstrating that "temporally structured replay" occurs in both the hippocampus and visual cortex.
  •  
    Taking a nap without REM sleep also led to slightly better results. But a nap that included REM sleep resulted in nearly a 40 percent improvement over the pre-nap performance
Tero Toivanen

Tests find benefit of sleeping on job - Science, News - The Independent - 0 views

  • A type of dreamy sleep that occurs more frequently in the early morning is important for solving problems that cannot be easily answered during the day, a study has found.
  • The discovery could explain many anecdotal accounts of famous intellectuals who had wrestled with a problem only to find that they have solved it by the morning after a good night's sleep.
  • Scientists believe that a form of dreaming slumber called rapid-eye movement (REM) sleep, when the brain becomes relatively active and the eyes flicker from side to side under closed eyelids, plays a crucial role in subconscious problem solving.
  • ...3 more annotations...
  • In a series of tests on nearly 80 people, the researchers found that REM sleep increases the chances of someone being able to successfully solve a new problem involving creative associations – finding an underlying pattern behind complex information.
  • Those people who had enjoyed REM sleep improved significantly, by about 40 per cent, while the other volunteers who had not had REM sleep showed little if any improvement, according to the study published in the journal Proceedings of the National Academy of Sciences.
  • The researchers suggest that it is not merely sleep itself, or the simple passage of time, that is important for the solving of a new problem, but the act of being able to fall into a state of REM sleep where the brain slips into a different kind of neural activity that encourages the formation of new nerve connections.
  •  
    A type of dreamy sleep that occurs more frequently in the early morning is important for solving problems that cannot be easily answered during the day, a study has found.
Ruth Howard

Artificial Synesthesia for Synthetic Vision via Sensory Substitution - 0 views

  • The additional perception is regarded by the trained synesthete as real, often outside the body, instead of imagined in the mind's eye. Its reality and vividness are what makes artificial synesthesia so interesting in its violation of conventional perception. Synesthesia in general is also fascinating because logically it should have been a product of the human brain, where the evolutionary trend has been for increasing coordination, mutual consistency and perceptual robustness in the processing of different sensory inputs.
  • synesthesia
  • options it may provide for people with sensory disabilities like deafness and blindness, where a neural joining of senses can help in replacing one sense by the other:
  • ...3 more annotations...
  • hear colors, taste shapes, or experience other curious sensory modality crossings, allegedly related to abnormal functioning of the hippocampus, one of the limbic structures in the brain. It has also been suggested that synesthesia constitutes a form of "supernormal integration" involving the posterior parietal cortex. The Russian composer Alexander Scriabin and Russian-born painter Wassily Kandinsky both pioneered artistic links between sight and sound, while they may have been synesthetes themselves. Russian mnemonist Solomon Shereshevskii, studied for decades by neuropsychologist Alexander Luria, appears to have used his natural synesthesia to memorize amazing amounts of data.
  • in seeing with your ears when using a device that maps images into sounds, or in hearing with your eyes when using a device that maps sounds into images.
  • In case of "explicit" synesthesia, the sounds would induce conscious sensations (qualia) of light and visual patterns.
Tero Toivanen

The Neural Advantage of Speaking 2 Languages: Scientific American - 0 views

  • The ability to speak a second language isn’t the only thing that distinguishes bilingual people from their monolingual counterparts—their brains work differently, too. Research has shown, for instance, that children who know two languages more easily solve problems that involve misleading cues.
  • The findings suggest that after learning a second language, people never look at words the same way again.
  • “The most important implication of the study is that even when a per­son is reading in his or her native language, there is an influence of knowledge of the nondominant second language,” Van Assche notes. “Becoming a bilingual changes one of people’s most automatic skills.”
  •  
    "The most important implication of the study is that even when a per son is reading in his or her native language, there is an influence of knowledge of the nondominant second language," Van Assche notes. "Becoming a bilingual changes one of people's most automatic skills."
Daly de Gagne

Lerner's Notebook: New Mindfulness Book for Therapists by Daniel J. Siegel - 0 views

  •  
    Very interesting, positive review of psychiatrist Daniel J Siegle's new book on mindful for psychotherapists. 
1 - 15 of 15
Showing 20 items per page