Skip to main content

Home/ Groups/ Math-a-manics
2More

Darkness on the Edge of the Universe - NYTimes.com - 0 views

  • This story of discovery begins a century ago with Albert Einstein, who realized that space is not an immutable stage on which events play out, as Isaac Newton had envisioned. Instead, through his general theory of relativity, Einstein found that space, and time too, can bend, twist and warp, responding much as a trampoline does to a jumping child. In fact, so malleable is space that, according to the math, the size of the universe necessarily changes over time: the fabric of space must expand or contract — it can’t stay put. For Einstein, this was an unacceptable conclusion. He’d spent 10 grueling years developing the general theory of relativity, seeking a better understanding of gravity, but to him the notion of an expanding or contracting cosmos seemed blatantly erroneous. It flew in the face of the prevailing wisdom that, over the largest of scales, the universe was fixed and unchanging. Einstein responded swiftly. He modified the equations of general relativity so that the mathematics would yield an unchanging cosmos. A static situation, like a stalemate in a tug of war, requires equal but opposite forces that cancel each other. Across large distances, the force that shapes the cosmos is the attractive pull of gravity. And so, Einstein reasoned, a counterbalancing force would need to provide a repulsive push. But what force could that be? Remarkably, he found that a simple modification of general relativity’s equations entailed something that would have, well, blown Newton’s mind: antigravity — a gravitational force that pushes instead of pulls. Ordinary matter, like the Earth or Sun, can generate only attractive gravity, but the math revealed that a more exotic source — an energy that uniformly fills space, much as steam fills a sauna, only invisibly — would generate gravity’s repulsive version. Einstein called this space-filling energy the cosmological constant, and he found that by finely adjusting its value, the repulsive gravity it produced would precisely cancel the usual attractive gravity coming from stars and galaxies, yielding a static cosmos
  •  
    Interesting discussion of the cosmological constant aka dark energy.
3More

Researchers Use MRI to Predict Your Gaming Prowess | GameLife | Wired.com - 0 views

  • Powerful statistical algorithms allow us to connect these patterns to individual learning success.
  •  
    Predicting gaming ability from MRI scans. Cool or disturbing?
  •  
    Interesting but creepy use of "powerful statistical algorithms".
1More

Make: Online : Introducing "Math Monday" - 0 views

  •  
    This is an interesting project: how to cut a bagel into interlocking halves. Please note that this is the first of a weekly series. Newer postings aren't linked on this page, so I will bookmark another page that does provide links to explore other posts. This site has some interesting stuff, but the navigation leaves something to be desired.
1More

Math Monday blog on makezine.com - 0 views

  •  
    Here's the promised Math Monday post that has available links to previous posts. This site is difficult to navigate, but has content worth exploring.
1More

Professional Development: Webinars - Key Curriculum Press - 0 views

  •  
    A free series of webinars on GSP. Includes access to ready-made GSP files,
2More

New math model could help preserve species - 0 views

  • Instead of relying solely on empirical studies as the basis for habitat conservation, Omri Allouche, a student at the Department of Evolution, Systematics and Ecology at the Hebrew University, has developed, under the supervision of Prof. Ronen Kadmon, a predictive mathematical model.
  •  
    New math model overturns assumptions of models based only on empirical evidence.
1More

Professional Development: Factors and Multiples (Elementary Math) - Key Curriculum Press - 0 views

  •  
    Another free webinar on using GSP
1More

Math Humor - 0 views

  •  
    One of my professor friends sent this to me, thought you might like it.
5More

Sizing Up Consciousness by Its Bits - NYTimes.com - 0 views

  • Dr. Tononi’s theory is, potentially, very different. He and his colleagues are translating the poetry of our conscious experiences into the precise language of mathematics. To do so, they are adapting information theory, a branch of science originally applied to computers and telecommunications.
  • Dr. Tononi began to think of consciousness in a different way, as a particularly rich form of information. He took his inspiration from the American engineer Claude Shannon, who built a scientific theory of information in the mid-1900s. Mr. Shannon measured information in a signal by how much uncertainty it reduced.
  • Dr. Tononi and his colleagues have been expanding traditional information theory in order to analyze integrated information. It is possible, they have shown, to calculate how much integrated information there is in a network. Dr. Tononi has dubbed this quantity phi, and he has studied it in simple networks made up of just a few interconnected parts. How the parts of a network are wired together has a big effect on phi. If a network is made up of isolated parts, phi is low, because the parts cannot share information. But simply linking all the parts in every possible way does not raise phi much. “It’s either all on, or all off,” Dr. Tononi said. In effect, the network becomes one giant photodiode. Networks gain the highest phi possible if their parts are organized into separate clusters, which are then joined. “What you need are specialists who talk to each other, so they can behave as a whole,” Dr. Tononi said. He does not think it is a coincidence that the brain’s organization obeys this phi-raising principle.
  • ...1 more annotation...
  • It is impossible, for example, to calculate phi for the human brain because its billions of neurons and trillions of connections can be arranged in so many ways. Dr. Koch and Dr. Tononi recently started a collaboration to determine phi for a much more modest nervous system, that of a worm known as Caenorhabditis elegans. Despite the fact that it has only 302 neurons in its entire body, Dr. Koch and Dr. Tononi will be able make only a rough approximation of phi, rather than a precise calculation. “The lifetime of the universe isn’t long enough for that
  •  
    Measuring consciousness with mathematical concept of information theory
1More

Lessons in Sumerian Math on Display - NYTimes.com - 0 views

  •  
    Interesting article that ties together math and history
1More

Can you survive a jump from a building? | Wired Science | Wired.com - 0 views

  •  
    Nice real world math calculations. I think I'll take their word for it though. Not enough snow in San Diego to test it anyway.
1More

Apple engineer re-creates ancient computer with Legos | Technically Incorrect - CNET News - 0 views

  •  
    Mathematical calculations performed by a Lego construction!? And based on a 2000 year old computer! Pretty cool. Wonder if he sells the construction plans.
2More

Computational Photography May Help Us See Around Corners - NYTimes.com - 0 views

  • From the reflected light, as well as the room’s geometry and mathematical modeling, he deduces the structure of the hidden objects. “If you modify your camera and add sophisticated processing,” he said, “the camera can look around objects and see what’s beyond
    • Peter Kronfeld
       
      Cool combination of math, geometry, lasers, and computation.
2More

Shooting for the Sun - Magazine - The Atlantic - 0 views

  • JTEC was only a set of mathematical equations and the beginnings of a prototype, but Johnson had made the tantalizing claim that his device would be able to turn solar heat into electricity with twice the efficiency of a photovoltaic cell
  •  
    Might interest students that don't find math relevant or engaging. What teenager doesn't like a SuperSoaker?
1More

UK Science Journal Publishes Study By 8-Year-Olds : NPR - 0 views

  •  
    The way science should be taught
6More

5-Year-Olds Can Learn Calculus - Luba Vangelova - The Atlantic - 0 views

  • But this progression actually “has nothing to do with how people think, how children grow and learn, or how mathematics is built,” says pioneering math educator and curriculum designer Maria Droujkova.
  • The current sequence is merely an entrenched historical accident that strips much of the fun out of what she describes as the “playful universe” of mathematics
  • “Calculations kids are forced to do are often so developmentally inappropriate, the experience amounts to torture,” she says. They also miss the essential point—that mathematics is fundamentally about patterns and structures, rather than “little manipulations of numbers,” as she puts it.
  • ...3 more annotations...
  • Studies [e.g.,  this one, and many others referenced in this symposium] have shown that games or free play are efficient ways for children to learn, and they enjoy them.
  • start by creating rich and social mathematical experiences that are complex (allowing them to be taken in many different directions) yet easy (making them conducive to immediate play). Activities that fall into this quadrant: building a house with LEGO blocks, doing origami or snowflake cut-outs, or using a pretend “function box” that transforms objects (and can also be used in combination with a second machine to compose functions, or backwards to invert a function, and so on).
  • What is learned without play is qualitatively different. It helps with test taking and mundane exercises, but it does nothing for logical thinking and problem solving.
14More

The Singular Mind of Terry Tao - The New York Times - 0 views

  • his view of mathematics has utterly changed since childhood.
  • But it turned out that the work of real mathematicians bears little resemblance to the manipulations and memorization of the math student.
  • he ancient art of mathematics, Tao has discovered, does not reward speed so much as patience, cunning and, perhaps most surprising of all, the sort of gift for collaboration and improvisation that characterizes the best jazz musicians.
  • ...10 more annotations...
  • n class, he conveys a sense that mathematics is fun.
  • at 8 years old, Tao scored a 760 on the math portion of the SAT — but Stanley urged the couple to keep taking things slow and give their son’s emotional and social skills time to develop.
  • Tao became notorious for his nights haunting the graduate computer room to play the historical-­simulation game Civilization. (He now avoids computer games, he told me, because of what he calls a ‘‘completist streak’’ that makes it hard to stop playing.) At a local comic-book store, Tao met a circle of friends who played ‘‘Magic: The Gathering,’’ the intricate fantasy card game. This was Tao’s first real experience hanging out with people his age, but there was also an element, he admitted, of escaping the pressures of Princeton
  • Gifted children often avoid challenges at which they might not excel.
  • At Princeton, crisis came in the form of the ‘‘generals,’’ a wide-­ranging, arduous oral examination administered by three professors. While other students spent months working through problem sets and giving one another mock exams, Tao settled on his usual test-prep strategy: last-­minute cramming. ‘‘I went in and very quickly got out of my depth,’’ he said. ‘‘They were asking questions which I had no ability to answer.’’
  • The true work of the mathematician is not experienced until the later parts of graduate school, when the student is challenged to create knowledge in the form of a novel proof.
  • As a group, the people drawn to mathematics tend to value certainty and logic and a neatness of outcome, so this game becomes a special kind of torture. And yet this is what any ­would-be mathematician must summon the courage to face down: weeks, months, years on a problem that may or may not even be possible to unlock.
  • Ask mathematicians about their experience of the craft, and most will talk about an intense feeling of intellectual camaraderie. ‘‘A very central part of any mathematician’s life is this sense of connection to other minds, alive today and going back to Pythagoras,’
  • ‘Terry is what a great 21st-­century mathematician looks like,’’ Jordan Ellenberg, a mathematician at the University of Wisconsin, Madison, who has collaborated with Tao, told me. He is ‘‘part of a network, always communicating, always connecting what he is doing with what other people are doing.’’
  • Early encounters with math can be misleading. The subject seems to be about learning rules — how and when to apply ancient tricks to arrive at an answer. Four cookies remain in the cookie jar; the ball moves at 12.5 feet per second. Really, though, to be a mathematician is to experiment. Mathematical research is a fundamentally creative act.
  •  
    Great insight into how math is learned, and how it should be taught
‹ Previous 21 - 40 Next › Last »
Showing 20 items per page