Skip to main content

Home/ Math-a-manics/ Group items tagged computer

Rss Feed Group items tagged

Peter Kronfeld

Apple engineer re-creates ancient computer with Legos | Technically Incorrect - CNET News - 0 views

  •  
    Mathematical calculations performed by a Lego construction!? And based on a 2000 year old computer! Pretty cool. Wonder if he sells the construction plans.
Peter Kronfeld

Computational Photography May Help Us See Around Corners - NYTimes.com - 0 views

  • From the reflected light, as well as the room’s geometry and mathematical modeling, he deduces the structure of the hidden objects. “If you modify your camera and add sophisticated processing,” he said, “the camera can look around objects and see what’s beyond
    • Peter Kronfeld
       
      Cool combination of math, geometry, lasers, and computation.
Peter Kronfeld

Big Data's Impact in the World - NYTimes.com - 0 views

  • The impact of data abundance extends well beyond business. Justin Grimmer, for example, is one of the new breed of political scientists. A 28-year-old assistant professor at Stanford, he combined math with political science in his undergraduate and graduate studies, seeing “an opportunity because the discipline is becoming increasingly data-intensive.” His research involves the computer-automated analysis of blog postings, Congressional speeches and press releases, and news articles, looking for insights into how political ideas spread.
  • But the computer tools for gleaning knowledge and insights from the Internet era’s vast trove of unstructured data are fast gaining ground. At the forefront are the rapidly advancing techniques of artificial intelligence like natural-language processing, pattern recognition and machine learning.
Peter Kronfeld

Go Ahead, Mess With Texas Instruments - Phil Nichols - The Atlantic - 0 views

  • If you had asked them, most of my high school teachers would have called me an unmotivated student or said that I lacked discipline and didn't take learning seriously. And yet, that abandoned storage bin told another story: with the aid of my calculator, I'd crafted narratives, drawn storyboards, visualized foreign and familiar environments and coded them into existence. I'd learned two programming languages and developed an online network of support from experienced programmers. I'd honed heuristics for research and discovered workarounds when I ran into obstacles. I'd found outlets to share my creations and used feedback from others to revise and refine my work. The TI-83 Plus had helped me cultivate many of the overt and discrete habits of mind necessary for autonomous, self-directed learning. And even more, it did this without resorting to grades, rewards, or other extrinsic motivators that schools often use to coerce student engagement.
  • I've now begun to see Texas Instruments graphing calculators as unique among educational technologies in that they enable learning that is couched in discovery more than formal teaching.
  • take the notion of "correctness." School typically assumes that answers fall neatly into categories of "right" and "wrong." As a conventional tool for computing "right" answers, calculators often legitimize this idea; the calculator solves problems, gives answers. But once an endorsed, conventional calculator becomes a subversive, programmable computer it destabilizes this polarity. Programming undermines the distinction between "right" and "wrong" by emphasizing the fluidity between the two. In programming, there is no "right" answer. Sure, a program might not compile or run, but making it offers multiple pathways to success, many of which are only discovered through a series of generative failures. Programming does not reify "rightness;" instead, it orients the programmer toward intentional reading, debugging, and refining of language to ensure clarity. This is a form of learning that privileges the process of discovery over the interventions of formal teaching. It can fuel an intrinsic desire to pursue similar learning experiences, but even more, it gradually transforms the outlook of the student
  • ...3 more annotations...
  • Subversion encourages students to take an imaginative stance toward learning, to embrace failure as an integral part of success, to see the world for what it is and consider what it might look like under a different set of conditions.
  • The iPad is among the recent panaceas being peddled to schools, but like those that came before, its ostensibly subversive shell houses a fairly conventional approach to learning. Where Texas Instruments graphing calculators include a programming framework accessible even to amateurs, writing code for an iPad is restricted to those who purchase an Apple developer account, create programs that align with Apple standards, and submit their finished products for Apple's approval prior to distribution. As such, for the average student, imaginative activities on an iPad are always mediated by pre-existing apps and therefore, are limited to virtual worlds created by others, not by students themselves. Pair this with the fact that most teachers and administrators only allow classroom use of a few endorsed apps and it becomes clear that these devices are doing more to centralize the school's authority over the learning process than to encourage self-directed creative activity.
  • learning to program taught habits of mind that persist to this day in small yet vital ways. In my work as a teacher, I often hear colleagues lamenting the widespread use of calculator games among students. They consider such forms of "play" an abuse of educational technology and a threat to student learning. But this assumption ignores the tacit learning that arises from repurposing conventional learning apparatuses. My TI-83 Plus awoke a curiosity that exerted a subtle but powerful push toward autonomy and self-direction.
  •  
    Learning to program a graphing calculator gave the author a deeper education. Results: intrinsic motivation and an ability to "embrace failure as an integral part of success", as well as developing creativity, problem-solving skills, and persistence. Interesting critique of the iPad as a more conventional tool of learning vs. subversive.
Peter Kronfeld

The Singular Mind of Terry Tao - The New York Times - 0 views

  • his view of mathematics has utterly changed since childhood.
  • But it turned out that the work of real mathematicians bears little resemblance to the manipulations and memorization of the math student.
  • he ancient art of mathematics, Tao has discovered, does not reward speed so much as patience, cunning and, perhaps most surprising of all, the sort of gift for collaboration and improvisation that characterizes the best jazz musicians.
  • ...10 more annotations...
  • n class, he conveys a sense that mathematics is fun.
  • at 8 years old, Tao scored a 760 on the math portion of the SAT — but Stanley urged the couple to keep taking things slow and give their son’s emotional and social skills time to develop.
  • Tao became notorious for his nights haunting the graduate computer room to play the historical-­simulation game Civilization. (He now avoids computer games, he told me, because of what he calls a ‘‘completist streak’’ that makes it hard to stop playing.) At a local comic-book store, Tao met a circle of friends who played ‘‘Magic: The Gathering,’’ the intricate fantasy card game. This was Tao’s first real experience hanging out with people his age, but there was also an element, he admitted, of escaping the pressures of Princeton
  • Gifted children often avoid challenges at which they might not excel.
  • At Princeton, crisis came in the form of the ‘‘generals,’’ a wide-­ranging, arduous oral examination administered by three professors. While other students spent months working through problem sets and giving one another mock exams, Tao settled on his usual test-prep strategy: last-­minute cramming. ‘‘I went in and very quickly got out of my depth,’’ he said. ‘‘They were asking questions which I had no ability to answer.’’
  • The true work of the mathematician is not experienced until the later parts of graduate school, when the student is challenged to create knowledge in the form of a novel proof.
  • As a group, the people drawn to mathematics tend to value certainty and logic and a neatness of outcome, so this game becomes a special kind of torture. And yet this is what any ­would-be mathematician must summon the courage to face down: weeks, months, years on a problem that may or may not even be possible to unlock.
  • Ask mathematicians about their experience of the craft, and most will talk about an intense feeling of intellectual camaraderie. ‘‘A very central part of any mathematician’s life is this sense of connection to other minds, alive today and going back to Pythagoras,’
  • ‘Terry is what a great 21st-­century mathematician looks like,’’ Jordan Ellenberg, a mathematician at the University of Wisconsin, Madison, who has collaborated with Tao, told me. He is ‘‘part of a network, always communicating, always connecting what he is doing with what other people are doing.’’
  • Early encounters with math can be misleading. The subject seems to be about learning rules — how and when to apply ancient tricks to arrive at an answer. Four cookies remain in the cookie jar; the ball moves at 12.5 feet per second. Really, though, to be a mathematician is to experiment. Mathematical research is a fundamentally creative act.
  •  
    Great insight into how math is learned, and how it should be taught
Peter Kronfeld

If You've Got the Skills, She's Got the Job - NYTimes.com - 0 views

  • Many years ago, people learned to weld in a high school shop class or in a family business or farm, and they came up through the ranks and capped out at a certain skill level. They did not know the science behind welding,” so could not meet the new standards of the U.S. military and aerospace industry. “They could make beautiful welds,” she said, “but they did not understand metallurgy, modern cleaning and brushing techniques” and how different metals and gases, pressures and temperatures had to be combined.
  • Welding “is a $20-an-hour job with health care, paid vacations and full benefits,” said Tapani, but “you have to have science and math. I can’t think of any job in my sheet metal fabrication company where math is not important. If you work in a manufacturing facility, you use math every day; you need to compute angles and understand what happens to a piece of metal when it’s bent to a certain angle.” Who knew? Welding is now a STEM job — that is, a job that requires knowledge of science, technology, engineering and math.
  • even before the Great Recession we had a mounting skills problem as a result of 25 years of U.S. education failing to keep up with rising skills demands, and it’s getting worse.
Peter Kronfeld

The Ugly, Corrupted, Brilliant Games of Michael Brough | Game|Life | Wired.com - 0 views

  • Corrypt, upon proper exploration, revealed itself to be a brilliantly designed puzzle game, unforgiving and unwilling to accommodate players who refuse to give it their full attention. Peel back one layer, and it reveals another more surprising one.
  • After completing a degree in math and computer science at the University of Auckland, Brough moved to London and began working towards a Ph.D. He landed a decent-paying programming job while continuing his scholastic work, but continued making games, including the beautiful, abstract strategy game Vertex Dispenser, which even Brough admits may have been too esoteric. It combined elements of shooters and real-time strategy games with a complex puzzle system, and many players felt overwhelmed. “I just could not get my head around those concepts at the same time,” said one.
  • Well-designed games, he believes, can teach people how to do some things better. By simulating challenging situations, games can teach us about “managing unexpected situations… making good decisions, thinking about the costs of our actions and dealing with the consequences,” he says.
Peter Kronfeld

Scientific Data Has Become So Complex, We Have to Invent New Math to Deal With It - Wir... - 0 views

  • This approach can even be useful for applications that are not, strictly speaking, compressed sensing problems, such as the Netflix prize.
    • Peter Kronfeld
       
      Took 2006 - 2009 to accomplish, by an "international team of statisticians, machine learning experts and computer engineers"
  • Given the enormous popularity of Netflix, even an incremental improvement in the predictive algorithm results in a substantial boost to the company’s bottom line. Recht found that he could accurately predict which movies customers might be interested in purchasing, provided he saw enough products per person. Between 25 and 100 products were sufficient to complete the matrix.
  • Across every discipline, data sets are getting bigger and more complex, whether one is dealing with medical records, genomic sequencing, neural networks in the brain, astrophysics, historical archives, or social networks. Alessandro Vespignani, a physicist at Northeastern University who specializes in harnessing the power of social networking to model disease outbreaks, stock market behavior, collective social dynamics, and election outcomes, has collected many terabytes of data from social networks such as Twitter, nearly all of it raw and unstructured. “We didn’t define the conditions of the experiments, so we don’t know what we are capturing,” he said.
  • ...4 more annotations...
  • It wasn’t the size of the data set that was daunting; by big data standards, the size was quite manageable. It was the sheer complexity and lack of formal structure that posed a problem.
  • calculus lets you take a lot of simple models and integrate them into one big picture.” Similarly, Coifman believes that modern mathematics — notably geometry — can help identify the underlying global structure of big datasets.
  • The key to the technique’s success is a concept known as sparsity, which usually denotes an image’s complexity, or lack thereof. It’s a mathematical version of Occam’s razor: While there may be millions of possible reconstructions for a fuzzy, ill-defined image, the simplest (sparsest) version is probably the best fit. Out of this serendipitous discovery, compressed sensing was born.
  • Using compressed sensing algorithms, it is possible to sample only 100,000 of, say, 1 million pixels in an image, and still be able to reconstruct it in full resolution — provided the key elements of sparsity and grouping (or “holistic measurements”) are present. It is useful any time one encounters a large dataset in which a significant fraction of the data is missing or incomplete.
Peter Kronfeld

Sizing Up Consciousness by Its Bits - NYTimes.com - 0 views

  • Dr. Tononi’s theory is, potentially, very different. He and his colleagues are translating the poetry of our conscious experiences into the precise language of mathematics. To do so, they are adapting information theory, a branch of science originally applied to computers and telecommunications.
  • Dr. Tononi began to think of consciousness in a different way, as a particularly rich form of information. He took his inspiration from the American engineer Claude Shannon, who built a scientific theory of information in the mid-1900s. Mr. Shannon measured information in a signal by how much uncertainty it reduced.
  • Dr. Tononi and his colleagues have been expanding traditional information theory in order to analyze integrated information. It is possible, they have shown, to calculate how much integrated information there is in a network. Dr. Tononi has dubbed this quantity phi, and he has studied it in simple networks made up of just a few interconnected parts. How the parts of a network are wired together has a big effect on phi. If a network is made up of isolated parts, phi is low, because the parts cannot share information. But simply linking all the parts in every possible way does not raise phi much. “It’s either all on, or all off,” Dr. Tononi said. In effect, the network becomes one giant photodiode. Networks gain the highest phi possible if their parts are organized into separate clusters, which are then joined. “What you need are specialists who talk to each other, so they can behave as a whole,” Dr. Tononi said. He does not think it is a coincidence that the brain’s organization obeys this phi-raising principle.
  • ...1 more annotation...
  • It is impossible, for example, to calculate phi for the human brain because its billions of neurons and trillions of connections can be arranged in so many ways. Dr. Koch and Dr. Tononi recently started a collaboration to determine phi for a much more modest nervous system, that of a worm known as Caenorhabditis elegans. Despite the fact that it has only 302 neurons in its entire body, Dr. Koch and Dr. Tononi will be able make only a rough approximation of phi, rather than a precise calculation. “The lifetime of the universe isn’t long enough for that
  •  
    Measuring consciousness with mathematical concept of information theory
Peter Kronfeld

Will Africa Produce the 'Next Einstein'? | WIRED - 0 views

  • There are three formal AIMS undertakings: a master’s degree program in Mathematical Sciences, research, and teacher training. The master’s program offers free tuition to accepted students and trains them in both general principles – problem formulation, the scientific method, communication – and cutting-edge math in subjects including computer science, biomathematics, and financial mathematics. Research will allow for international collaborations and advanced student training.
    • Peter Kronfeld
       
      Brilliant: applied math (CompSci, bio, financial) and 3 keys: problem formulation, the scientific method, and communication
  • Traditionally, classrooms were led by an authoritative teacher who disseminated information to silent students, but Zomahoun hopes to turn that paradigm on its head. “We train people who can challenge the status quo,” he explains, “not just people who learn from books, listen to lectures, and just repeat it.” Rather, he hopes to instill qualities like “critical thinking, independent thinking, and problem solving” in order to prepare students for real-world problems.
1 - 11 of 11
Showing 20 items per page