Skip to main content

Home/ Math-a-manics/ Group items tagged games

Rss Feed Group items tagged

Peter Kronfeld

The Ugly, Corrupted, Brilliant Games of Michael Brough | Game|Life | Wired.com - 0 views

  • Corrypt, upon proper exploration, revealed itself to be a brilliantly designed puzzle game, unforgiving and unwilling to accommodate players who refuse to give it their full attention. Peel back one layer, and it reveals another more surprising one.
  • After completing a degree in math and computer science at the University of Auckland, Brough moved to London and began working towards a Ph.D. He landed a decent-paying programming job while continuing his scholastic work, but continued making games, including the beautiful, abstract strategy game Vertex Dispenser, which even Brough admits may have been too esoteric. It combined elements of shooters and real-time strategy games with a complex puzzle system, and many players felt overwhelmed. “I just could not get my head around those concepts at the same time,” said one.
  • Well-designed games, he believes, can teach people how to do some things better. By simulating challenging situations, games can teach us about “managing unexpected situations… making good decisions, thinking about the costs of our actions and dealing with the consequences,” he says.
Peter Kronfeld

Jane McGonigal shows how games make us resilient | Geek Gestalt - CNET News - 0 views

  • you can download power packs that have all the quests designed for you by scientists or doctors and experts
    • Peter Kronfeld
       
      "Quests" - excellent way to look at a daunting challenge through a motivational lens
  • We've probably spent as much time on research as we have the actual design and development of the game.
  • in the game we give you graduated will power challenges. Instead of quitting smoking on day one, or going cold turkey on all your favorite foods on day one, you're actually building up the will power muscle first, so that when you do make that decision and make that effort, you're more likely to be successful. Which is how a good game should be, with escalating challenges, and not giving you something too hard until you're ready for it.
Peter Kronfeld

Researchers Use MRI to Predict Your Gaming Prowess | GameLife | Wired.com - 0 views

  • Powerful statistical algorithms allow us to connect these patterns to individual learning success.
  •  
    Predicting gaming ability from MRI scans. Cool or disturbing?
  •  
    Interesting but creepy use of "powerful statistical algorithms".
Peter Kronfeld

The Singular Mind of Terry Tao - The New York Times - 0 views

  • his view of mathematics has utterly changed since childhood.
  • But it turned out that the work of real mathematicians bears little resemblance to the manipulations and memorization of the math student.
  • he ancient art of mathematics, Tao has discovered, does not reward speed so much as patience, cunning and, perhaps most surprising of all, the sort of gift for collaboration and improvisation that characterizes the best jazz musicians.
  • ...10 more annotations...
  • n class, he conveys a sense that mathematics is fun.
  • at 8 years old, Tao scored a 760 on the math portion of the SAT — but Stanley urged the couple to keep taking things slow and give their son’s emotional and social skills time to develop.
  • Tao became notorious for his nights haunting the graduate computer room to play the historical-­simulation game Civilization. (He now avoids computer games, he told me, because of what he calls a ‘‘completist streak’’ that makes it hard to stop playing.) At a local comic-book store, Tao met a circle of friends who played ‘‘Magic: The Gathering,’’ the intricate fantasy card game. This was Tao’s first real experience hanging out with people his age, but there was also an element, he admitted, of escaping the pressures of Princeton
  • Gifted children often avoid challenges at which they might not excel.
  • At Princeton, crisis came in the form of the ‘‘generals,’’ a wide-­ranging, arduous oral examination administered by three professors. While other students spent months working through problem sets and giving one another mock exams, Tao settled on his usual test-prep strategy: last-­minute cramming. ‘‘I went in and very quickly got out of my depth,’’ he said. ‘‘They were asking questions which I had no ability to answer.’’
  • The true work of the mathematician is not experienced until the later parts of graduate school, when the student is challenged to create knowledge in the form of a novel proof.
  • As a group, the people drawn to mathematics tend to value certainty and logic and a neatness of outcome, so this game becomes a special kind of torture. And yet this is what any ­would-be mathematician must summon the courage to face down: weeks, months, years on a problem that may or may not even be possible to unlock.
  • Ask mathematicians about their experience of the craft, and most will talk about an intense feeling of intellectual camaraderie. ‘‘A very central part of any mathematician’s life is this sense of connection to other minds, alive today and going back to Pythagoras,’
  • ‘Terry is what a great 21st-­century mathematician looks like,’’ Jordan Ellenberg, a mathematician at the University of Wisconsin, Madison, who has collaborated with Tao, told me. He is ‘‘part of a network, always communicating, always connecting what he is doing with what other people are doing.’’
  • Early encounters with math can be misleading. The subject seems to be about learning rules — how and when to apply ancient tricks to arrive at an answer. Four cookies remain in the cookie jar; the ball moves at 12.5 feet per second. Really, though, to be a mathematician is to experiment. Mathematical research is a fundamentally creative act.
  •  
    Great insight into how math is learned, and how it should be taught
Peter Kronfeld

More N.F.L. Teams Hire Statisticians But Their Use Remains Mostly Guarded - NYTimes.com - 0 views

  • when the Baltimore Ravens announced in August that they had hired a director of football analytics, it was a rare public signal of the growing interest among teams in weaving statistical analysis into game-day, draft and free-agency preparation, and even into the management of workouts and injury rehabilitation
  • With advanced statistics, he notes, teams are able to see trends and adjust in real time. It used to be that teams would look back at how often they ran a play and how much it gained. Now, do they want to know Cam Newton’s completion percentage when a defense rushes three? Or four? Or six or more? That information is available week to week, allowing teams to tailor game plans with far greater specificity. Much of the work is also centered on figuring out some of the game’s most vexing problems — when to kick a field goal versus going for it on fourth down; what to do under the new overtime rules; when to challenge a call; when to use a timeout — amid the chaos of the sideline.
  • For most teams, though, the most intriguing application may come in player evaluation — projecting how college players will perform in the N.F.L. and figuring out how valuable one player compared with another
Peter Kronfeld

Go Ahead, Mess With Texas Instruments - Phil Nichols - The Atlantic - 0 views

  • If you had asked them, most of my high school teachers would have called me an unmotivated student or said that I lacked discipline and didn't take learning seriously. And yet, that abandoned storage bin told another story: with the aid of my calculator, I'd crafted narratives, drawn storyboards, visualized foreign and familiar environments and coded them into existence. I'd learned two programming languages and developed an online network of support from experienced programmers. I'd honed heuristics for research and discovered workarounds when I ran into obstacles. I'd found outlets to share my creations and used feedback from others to revise and refine my work. The TI-83 Plus had helped me cultivate many of the overt and discrete habits of mind necessary for autonomous, self-directed learning. And even more, it did this without resorting to grades, rewards, or other extrinsic motivators that schools often use to coerce student engagement.
  • I've now begun to see Texas Instruments graphing calculators as unique among educational technologies in that they enable learning that is couched in discovery more than formal teaching.
  • take the notion of "correctness." School typically assumes that answers fall neatly into categories of "right" and "wrong." As a conventional tool for computing "right" answers, calculators often legitimize this idea; the calculator solves problems, gives answers. But once an endorsed, conventional calculator becomes a subversive, programmable computer it destabilizes this polarity. Programming undermines the distinction between "right" and "wrong" by emphasizing the fluidity between the two. In programming, there is no "right" answer. Sure, a program might not compile or run, but making it offers multiple pathways to success, many of which are only discovered through a series of generative failures. Programming does not reify "rightness;" instead, it orients the programmer toward intentional reading, debugging, and refining of language to ensure clarity. This is a form of learning that privileges the process of discovery over the interventions of formal teaching. It can fuel an intrinsic desire to pursue similar learning experiences, but even more, it gradually transforms the outlook of the student
  • ...3 more annotations...
  • Subversion encourages students to take an imaginative stance toward learning, to embrace failure as an integral part of success, to see the world for what it is and consider what it might look like under a different set of conditions.
  • The iPad is among the recent panaceas being peddled to schools, but like those that came before, its ostensibly subversive shell houses a fairly conventional approach to learning. Where Texas Instruments graphing calculators include a programming framework accessible even to amateurs, writing code for an iPad is restricted to those who purchase an Apple developer account, create programs that align with Apple standards, and submit their finished products for Apple's approval prior to distribution. As such, for the average student, imaginative activities on an iPad are always mediated by pre-existing apps and therefore, are limited to virtual worlds created by others, not by students themselves. Pair this with the fact that most teachers and administrators only allow classroom use of a few endorsed apps and it becomes clear that these devices are doing more to centralize the school's authority over the learning process than to encourage self-directed creative activity.
  • learning to program taught habits of mind that persist to this day in small yet vital ways. In my work as a teacher, I often hear colleagues lamenting the widespread use of calculator games among students. They consider such forms of "play" an abuse of educational technology and a threat to student learning. But this assumption ignores the tacit learning that arises from repurposing conventional learning apparatuses. My TI-83 Plus awoke a curiosity that exerted a subtle but powerful push toward autonomy and self-direction.
  •  
    Learning to program a graphing calculator gave the author a deeper education. Results: intrinsic motivation and an ability to "embrace failure as an integral part of success", as well as developing creativity, problem-solving skills, and persistence. Interesting critique of the iPad as a more conventional tool of learning vs. subversive.
Peter Kronfeld

5-Year-Olds Can Learn Calculus - Luba Vangelova - The Atlantic - 0 views

  • But this progression actually “has nothing to do with how people think, how children grow and learn, or how mathematics is built,” says pioneering math educator and curriculum designer Maria Droujkova.
  • The current sequence is merely an entrenched historical accident that strips much of the fun out of what she describes as the “playful universe” of mathematics
  • “Calculations kids are forced to do are often so developmentally inappropriate, the experience amounts to torture,” she says. They also miss the essential point—that mathematics is fundamentally about patterns and structures, rather than “little manipulations of numbers,” as she puts it.
  • ...3 more annotations...
  • Studies [e.g.,  this one, and many others referenced in this symposium] have shown that games or free play are efficient ways for children to learn, and they enjoy them.
  • start by creating rich and social mathematical experiences that are complex (allowing them to be taken in many different directions) yet easy (making them conducive to immediate play). Activities that fall into this quadrant: building a house with LEGO blocks, doing origami or snowflake cut-outs, or using a pretend “function box” that transforms objects (and can also be used in combination with a second machine to compose functions, or backwards to invert a function, and so on).
  • What is learned without play is qualitatively different. It helps with test taking and mundane exercises, but it does nothing for logical thinking and problem solving.
Peter Kronfeld

Rethinking Advanced Placement - NYTimes.com - 1 views

  • While Ms. Vangos believes the program could inspire students who “like to think outside the box,” she worries that the new math requirements will discourage others.
    • Peter Kronfeld
       
      Yikes! Why? This is the perfect opportunity to show students how math connects to the real world.
  • She is also frustrated by the predictable nature of many of the “dirty dozen,” the teachers’ nickname for the basic lab exercises now recommended by the College Board. In one that her class did last fall, the students looked at pre-stained slides of onion root tips to identify the stages of cell division and calculate the duration of the phases. She and her students, who historically score 4’s and 5’s on the exam, were one of several schools asked by the College Board to road test one of the proposed new labs to see if it brought back the “Oh, wow!” factor. The basic question: What factors affect the rate of photosynthesis in living plants? The new twist: Instead of being guided through the process, groups of two or three students had to dream up their own hypotheses and figure out how to test them. Caroline Brown, a senior who stages the school’s plays, connected the lab to her passion for theater. She borrowed green, sky blue and “Broadway pink” filters from the playhouse to test how different shades of light affected photosynthesis in sunken spinach leaves.
    • Peter Kronfeld
       
      Fantastic! Seems like the new labs encourage creative thinking instead of demanding adherence to a procedure.
  • But many of the courses, particularly in the sciences and history, have also been criticized for overwhelming students with facts to memorize and then rushing through important topics. Students and educators alike say that biology, with 172,000 test-takers this year, is one of the worst offenders. A.P. teachers have long complained that lingering for an extra 10 or 15 minutes on a topic can be a zero-sum game, squeezing out something else that needs to be covered for the exam. PowerPoint lectures are the rule. The homework wears down many students. And studies show that most schools do the same canned laboratory exercises, providing little sense of the thrill of scientific discovery.
    • Peter Kronfeld
       
      Highlights the problem of balancing breadth and depth.
  • ...1 more annotation...
  • The goal is to clear students’ minds to focus on bigger concepts and stimulate more analytic thinking. In biology, a host of more creative, hands-on experiments are intended to help students think more like scientists.
1 - 10 of 10
Showing 20 items per page