Skip to main content

Home/ Maritime News/ Group items tagged speed

Rss Feed Group items tagged

Jérôme OLLIER

Carbon and cost accounting for liner shipping under the European Union Emission Trading... - 0 views

  •  
    Excessive CO2 emissions and increased total costs of liner shipping are the two main problems affecting the environmental and economic benefits of liner companies under the European Union Emission Trading System (EU ETS). To address the upcoming EU ETS, we propose a carbon and cost accounting model for liner shipping that accurately calculates CO2 emissions and total cost of liner shipping. We conduct a case study that a containership operates on the liner route from the Far East to Northwest Europe. The results show that the sailing stage plays a pivotal role in CO2 emissions from liner shipping, accounting for 94.70% of CO2 emissions. Among four types of fuel, CO2 emissions from liner shipping using MGO is the largest, while CO2 emissions from liner shipping using methanol is the smallest. Methanol, as an alternative fuel, proves to be a better choice than LNG for CO2 control of liner shipping. The relationship between sailing speed and CO2 emissions follows a U-shaped curve for the selected containership. Notably, speed reduction is effective in carbon control of liner shipping only when the sailing speed exceeds 8.29 knots. Under the EU ETS, sailing speed is a key variable affecting the total cost of liner shipping. Speed reduction may not always be cost-effective. When keeping the total cost of liner shipping unchanged, sailing speed should be reduced as the EU allowance (EUA) price rises within a certain range. For the selected containership using MGO and HFO, the most economical sailing speed is 8.29 knots, corresponding to the increase in EUA price of 304.95% and 261.21%, respectively. If EUA price continues to rise, speed reduction will become ineffective in controlling the total cost of liner shipping. This model can enhance the environmental and economic benefits of liner companies, meet compliance requirements of the EU ETS, and provide a new perspective for carbon and cost control of liner shipping.
Jérôme OLLIER

Using Satellite AIS to Analyze Vessel Speeds Off the Coast of Washington State, U.S., a... - 0 views

  •  
    Most species of whales are vulnerable to vessel collisions, and the probability of lethality increases logistically with vessel speed. An Automatic Identification System (AIS) can provide valuable vessel activity data, but terrestrial-based AIS has a limited spatial range. As the need for open ocean monitoring increases, AIS broadcasts relayed over earth-orbiting satellites, satellite AIS (SAIS), provides a method for expanding the range of AIS broadcast reception. We used SAIS data from 2013 and 2014 to calculate vessel density and speed over ground around the coast of Washington state in the northwestern United States. Nearby shipping lanes connecting the Ports of Seattle, Tacoma, Portland, and in Canada, Vancouver, have the greatest density of vessel traffic arriving and departing. Knowledge of shipping activity is important in this area due to the nearby presence of NOAA designated Cetacean Density and Distribution Working Group's Biologically Important Areas (BIA) for large whale species vulnerable to vessel collisions. We quantified density and speed for each vessel type that transits through BIA's. We found that cargo and tanker vessels traveled the farthest distance at the greatest speeds. As ship-strike risk assessments have traditionally relied on terrestrial AIS, we explored issues in the application of SAIS data. Temporal gaps in SAIS data led to a resulting systematic underestimation of vessel speed in calculated speed over ground. However, SAIS can be helpful in documenting minimum vessel speeds across large geographic areas and across national boundaries, especially beyond the reach of terrestrial AIS receivers. SAIS data can also be useful in examining vessel density at broad scales and could be used to assess basin-wide open ocean routes. Future use of additional satellite platforms with AIS receivers and technological advances will help rectify this issue and improve data coverage and quality.
Jérôme OLLIER

Evaluating Adherence With Voluntary Slow Speed Initiatives to Protect Endangered Whales... - 0 views

  •  
    Vessel strikes are one of the main threats to large whales globally and to endangered blue, fin, and humpback whales in California waters. For over 10 years, NOAA has established seasonal voluntary Vessel Speed Reduction (VSR) zones off of California and requested that all vessels 300 gross tons (GT) or larger decrease speeds to 10 knots or less to reduce the risk of vessel strikes on endangered whales. We offer a comprehensive analysis quantifying cooperation levels of all vessels ≥ 300 GT from 2010 to 2019 within designated VSR zones using Automatic Identification Systems (AIS) data. While average speeds of large vessels have decreased across the years studied, cooperation with voluntary 10-knot speed reduction requests has been lower than estimated to be needed to reduce vessel-strike related mortality to levels that do not inhibit reaching and maintaining optimal sustainable populations. A comparison of vessel speeds across inactive and active voluntary VSR time periods show a modest (+ 15%) increase in cooperation from 2017 to 2019. A complementary, incentive-based VSR program that was started in 2014 and scaled up in 2018 within the region likely improved voluntary VSR cooperation levels, as participating container and car carrier vessels traveled at lower speeds during the VSR season than vessels not enrolled in the incentive-based effort. Comparisons of vessel speeds in the incentive-based VSR program across inactive and active time periods showed a significant (+ 41%) increase in cooperation. With cooperation levels for the voluntary VSR hovering around 50%, and the challenge of funding and sustaining an incentive-based VSR program, voluntary VSR approaches may be insufficient to achieve cooperation levels needed to significantly reduce the risk of vessel strike-related mortality for these federally protected whales, suggesting that VSR regulations warrant consideration.
Jérôme OLLIER

Potential Benefits of Vessel Slowdowns on Endangered Southern Resident Killer Whales - ... - 0 views

  •  
    A voluntary commercial vessel slowdown trial was conducted through 16 nm of shipping lanes overlapping critical habitat of at-risk southern resident killer whales (SRKW) in the Salish Sea. From August 7 to October 6, 2017, the trial requested piloted vessels to slow to 11 knots speed-through-water. Analysis of AIS vessel tracking data showed that 350 of 951 (37%) piloted transits achieved this target speed, 421 of 951 (44%) transits achieved speeds within one knot of this target (i.e., ≤12 knots), and 55% achieved speeds ≤ 13 knots. Slowdown results were compared to 'Baseline' noise of the same region, matched across lunar months. A local hydrophone listening station in Lime Kiln State Park, 2.3 km from the shipping lane, recorded 1.2 dB reductions in median broadband noise (10-100,000 Hz, rms) compared to the Baseline period, despite longer transit. The median reduction was 2.5 dB when filtering only for periods when commercial vessels were within 6 km radius of Lime Kiln. The reductions were highest in the 1st decade band (-3.1 dB, 10-100 Hz) and lowest in the 4th decade band (-0.3 dB reduction, 10-100 kHz). A regional vessel noise model predicted noise for a range of traffic volume and vessel speed scenarios for a 1133 km2 'Slowdown region' containing the 16 nm of shipping lanes. A temporally and spatially explicit simulation model evaluated the changes in traffic volume and speed on SRKW in their foraging habitat within this Slowdown region. The model tracked the number and magnitude of noise-exposure events that impacted each of 78 (simulated) SRKW across different traffic scenarios. These disturbance metrics were simplified to a cumulative effect termed 'potential lost foraging time' that corresponded to the sum of disturbance events described by assumptions of time that whales could not forage due to noise disturbance. The model predicted that the voluntary Slowdown trial achieved 22% reduction in 'potential lost foraging time' for SRK
Jérôme OLLIER

Hybrid dynamic modeling and receding horizon speed optimization for liner shipping oper... - 0 views

  •  
    Uncertainties in port handling efficiency can cause port delays in the liner shipping system. Furthermore, policies on carbon emission reduction, such as EEXI standards, restrict the potential for speed optimization in liner shipping operations. Traditional tactical planning speed optimization is unsuitable for operational-level decision making, leading to unreliable schedules. From a schedule-reliability and energy-efficiency perspective, we propose a real-time speed optimization method based on discrete hybrid automaton (DHA) and decentered model predictive control (DMPC). We use a dynamic adjustment of sailing speed to offset the disturbance caused by port handling efficiency uncertainties. First, we establish a DHA model that describes each ship's hybrid dynamics of state switching between sailing and berthing; then, we develop a prediction model for the DMPC controller, which is analogous to the DHA model. The schedule is transferred into time-position coordinates as controller reference trajectories in the receding horizon speed optimization framework. We consider determining tracking errors, carbon emissions, and fuel consumption as our objectives, and we carry out engine power limitation (EPL) analysis for the sample ship, which turns the EEXI standards into constraints. We attain the recommended speed by solving a mixed-integer optimization. We carry out a case study, and our results indicate the effectiveness of our proposed DHA-DMPC scheme in lowering port delays and achieving the best trade-off between schedule reliability and energy efficiency. Additionally, we conduct further experiments to analyze the impacts of various carbon reduction policies on the performance levels of liner shipping operations.
Jérôme OLLIER

Application of a New Shore-Based Vessel Traffic Monitoring System Within San Francisco ... - 0 views

  •  
    Vessel traffic management systems can be employed for environmental management where vessel activity may be of concern. One such location is in San Francisco Bay where a variety of vessel types transit a highly developed urban estuary. We analyzed vessel presence and speed across space and time using vessel data from the Marine Monitor, a vessel tracking system that integrates data from the Automatic Identification System and a marine-radar sensor linked to a high-definition camera. In doing so, we provide data that can inform collision risk to cetaceans who show an increased presence in the Bay and evaluation of the value in incorporating data from multiple sources when observing vessel traffic. We found that ferries traveled the greatest distance of any vessel type. Ferries and other commercial vessels (e.g., cargo and tanker ships and tug boats) traveled consistently in distinct paths while recreational traffic (e.g., motorized recreational craft and sailing vessels) was more dispersed. Large shipping vessels often traveled at speeds greater than 10 kn when transiting the study area, and ferries traveled at speeds greater than 30 kn. We found that distance traveled and speed varied by season for tugs, motorized recreational and sailing vessels. Distance traveled varied across day and night for cargo ships, tugs, and ferries while speed varied between day and night only for ferries. Between weekdays and weekends, distance traveled varied for cargo ships, ferries, and sailing vessels, while speed varied for ferries, motorized recreational craft, and sailing vessels. Radar-detected vessel traffic accounted for 33.9% of the total track distance observed, highlighting the need to include data from multiple vessel tracking systems to fully assess and manage vessel traffic in a densely populated urban estuary.
Jérôme OLLIER

The Role of Slower Vessel Speeds in Reducing Greenhouse Gas Emissions, Underwater Noise... - 0 views

  •  
    Reducing speeds across shipping fleets has been shown to make a substantial contribution to effective short term measures for reducing greenhouse gas (GHG) emissions, working toward the goal adopted by the International Maritime Organization (IMO) in April 2018 to reduce the total annual GHG emission by at least 50% by 2050 compared to 2008. I review modeling work on GHG emissions and also on the relationships between underwater noise, whale collision risk and speed. I examine different speed reduction scenarios that would contribute to GHG reduction targets, and the other environmental benefits of reduced underwater noise and risk of collisions with marine life. A modest 10% speed reduction across the global fleet has been estimated to reduce overall GHG emissions by around 13% (Faber et al., 2017) and improve the probability of meeting GHG targets by 23% (Comer et al., 2018). I conclude that such a 10% speed reduction, could reduce the total sound energy from shipping by around 40%. The associated reduction in overall ship strike risk has higher uncertainty but could be around 50%. This would benefit whale populations globally and complement current efforts to reduce collision risk in identified high risk areas through small changes in routing.
Jérôme OLLIER

#coronavirus - Slower Ship Speed in the Bahamas Due to #Covid19 Produces a Dramatic Red... - 0 views

  •  
    As underwater noise from ship traffic increases, profound effects on the marine environment highlight the need for improved mitigation measures. One measure, reduction in ship speed, has been shown to be one of the key drivers in reducing sound source levels of vessels. In 2017, a study began to assess the impacts of increasing commercial shipping traffic on sperm whales in Northwest Providence Channel, northern Bahamas, an international trade route that primarily serves the southeast US. Ship data were collected from an Automatic Identification System (AIS) station combined with recordings from an acoustic recorder to measure underwater sound levels and to detect the presence of sperm whales. Here we analyze a subset of these data to opportunistically investigate potential changes in ship traffic before and during the COVID-19 pandemic. These data span one calendar year from October 2019 to October 2020. A pre-COVID-19 dataset of 121 days, from a recorder approximately 2 km from the shipping route was compared to a 134-day dataset collected during COVID-19 from the same site, comprising 2900 and 3181 ten-minute recordings, respectively. A dramatic decrease in ocean noise levels concurrent with changes in shipping activity occurred during the pandemic. The mean pre-COVID-19 power density level in the 111-140 Hz 1/3-octave band was 88.81 dB re 1 μPa (range 81.38-100.90) and decreased to 84.27 dB re 1 μPa (range 78.60-99.51) during COVID-19, equating to a 41% reduction in sound pressure levels (SPL). After differences in seasonal changes in wind speed were accounted for, SPL decreased during the pandemic by 3.98 dB (37%). The most notable changes in ship activity were significantly reduced vessel speeds for all ship types and fewer ships using the area during the pandemic. Vessel speed was highly correlated to SPL and the only ship-based variable that predicted SPLs. Despite the opportunistic nature [i.e., not a standard before-after-control-impact (BACI) stud
Jérôme OLLIER

Modeling Whale Deaths From Vessel Strikes to Reduce the Risk of Fatality to Endangered ... - 0 views

  •  
    Vessel strikes have been documented around the world and frequently figure as a top human cause of large whale mortality. The shipping lanes in the Santa Barbara Channel, California and nearby waters have some of the highest predicted whale mortality from vessel strikes in the United States waters of the eastern Pacific. Beginning in 2007, National Oceanographic and Atmospheric Administration requested voluntary vessel speed reductions (VSRs) for vessels greater than 300 GT traveling in the Santa Barbara Channel shipping routes to decrease whale mortality from ship strikes. We employed a ship strike model using whale density data and automatic identification system (AIS) vessel data to estimate mortality under several management scenarios. To assess the effect of the VSR on strike mortality, we bootstrapped speeds from vessels greater than 19 m long that transited when no VSR was in place. Finally, we calculated the predicted mortality for hypothetical cooperation scenarios by artificially adding speed caps post-hoc to real vessel transits. For 2012-2018, we estimated that in our study area on average during summer/fall (June-November) 8.9 blue, 4.6 humpback, and 9.7 fin whales were killed from ship strikes each year (13-26% greater than previously estimated). We evaluated winter/spring (January-April) humpback mortality for the first time, resulting in an estimate of 5.7 deaths on average per year. Poor cooperation with the VSR led to low (5% maximum) to no reductions in the estimated number of strike mortalities. Evaluating potential scenarios showed that if 95% cooperation occurred in the lanes, whale deaths there would decrease by 22-26%. Adding VSRs with similar cooperation levels at the northern end of the Santa Barbara Channel and south of Channel Islands National Marine Sanctuary could decrease estimated strike mortalities in those areas by 30%. If VSRs were added and cooperation reached 95% there and in the lanes, we estimate a 21-29% decrease i
Jérôme OLLIER

Night and Day: Diel Differences in Ship Strike Risk for Fin Whales (Balaenoptera physal... - 0 views

  •  
    Collisions with ships (ship strikes) are a pressing conservation concern for fin whales (Balaenoptera physalus) along western North America. Fin whales exhibit strong diel patterns in dive behavior, remaining near the surface for most of the night, but how this behavior affects ship-strike risk is unknown. We combined diel patterns of surface use, habitat suitability predictions, and ship traffic data to evaluate spatial and temporal trends in ship-strike risk to fin whales of the California Current System (CCS). We tested a range of surface-use scenarios and found that both increased use of the upper water column and increased ship traffic contribute to elevated ship-strike risk at night. Lengthening nights elevate risk during winter throughout the CCS, though the Southern California Bight experienced consistently high risk both day and night year-round. Within designated shipping lanes, total annual nighttime strike risk was twice daytime risk. Avoidance probability models based on ship speed were used to compare the potential efficacy of speed restrictions at various scales. Speed reductions within lanes may be an efficient remediation, but they would address only a small fraction (13%) of overall ship-strike risk. Additional speed restrictions in the approaches to lanes would more effectively reduce overall risk.
Jérôme OLLIER

Anchor boxes adaptive optimization algorithm for maritime object detection in video sur... - 0 views

  •  
    With the development of the marine economy, video surveillance has become an important technical guarantee in the fields of marine engineering, marine public safety, marine supervision, and maritime traffic safety. In video surveillance, maritime object detection (MOD) is one of the most important core technologies. Affected by the size of maritime objects, distance, day and night weather, and changes in sea conditions, MOD faces challenges such as false detection, missed detection, slow detection speed, and low accuracy. However, the existing object detection algorithms usually adopt predefined anchor boxes to search and locate for objects of interest, making it difficult to adapt to maritime objects' complex features, including the varying scale and large aspect ratio difference. Therefore, this paper proposes a maritime object detection algorithm based on the improved convolutional neural network (CNN). Firstly, a differential-evolutionary-based K-means (DK-means) anchor box clustering algorithm is proposed to obtain adaptive anchor boxes to satisfy the maritime object characteristics. Secondly, an adaptive spatial feature fusion (ASFF) module is added in the neck network to enhance multi-scale feature fusion. Finally, focal loss and efficient intersection over union (IoU) loss are adopted to replace the original loss function to improve the network convergence speed. The experimental results on the Singapore maritime dataset show that our proposed algorithm improves the average precision by 7.1%, achieving 72.7%, with a detection speed of 113 frames per second, compared with You Only Look Once v5 small (YOLOv5s). Moreover, compared to other counterparts, it can achieve a better speed-accuracy balance, which is superior and feasible for the complex maritime environment.
Jérôme OLLIER

Active Whale Avoidance by Large Ships: Components and Constraints of a Complementary Ap... - 0 views

  •  
    The recurrence of lethal ship-whale collisions ('ship strikes') has prompted management entities across the globe to seek effective ways for reducing collision risk. Here we describe 'active whale avoidance' defined as a mariner making operational decisions to reduce the chance of a collision with a sighted whale. We generated a conceptual model of active whale avoidance and, as a proof of concept, apply data to the model based on observations of humpback whales surfacing in the proximity of large cruise ships, and simulations run in a full-mission bridge simulator and commonly used pilotage software. Application of the model demonstrated that (1) the opportunities for detecting a surfacing whale are often limited and temporary, (2) the cumulative probability of detecting one of the available 'cues' of whale's presence (and direction of travel) decreases with increased ship-to-whale distances, and (3) following detection time delays occur related to avoidance operations. These delays were attributed to the mariner evaluating competing risks (e.g., risk of whale collision vs. risk to human life, the ship, or other aspects of the marine environment), deciding upon an appropriate avoidance action, and achieving a new operational state by the ship once a maneuver is commanded. We thus identify several options for enhancing whale avoidance including training Lookouts to focus search efforts on a 'Cone of Concern,' defined here as the area forward of the ship where whales are at risk of collision based on the whale and ship's transit/swimming speed and direction of travel. Standardizing protocols for rapid communication of relevant sighting information among bridge team members can also increase avoidance by sharing information on the whale that is of sufficient quality to be actionable. We also found that, for marine pilots in Alaska, a slight change in course tends to be preferable to slowing the ship in response to a single sighted whale, owing, in part, to the substan
Jérôme OLLIER

Ship Strike Risk for Fin Whales (Balaenoptera physalus) Off the Garraf coast, Northwest... - 0 views

  •  
    Ship strikes are a widespread conservation issue for many cetacean species globally. Population level impacts depend on the occurrence and severity of collisions, which may lead to life altering injuries or fatalities. Such impacts are a major concern for large, long-lived, and reproductively slow species like the fin whale. Since 2014, a seasonal feeding aggregation of fin whales has been monitored from February to June off the Catalan coast (Spain), in the northwest Mediterranean Sea. Oceanographical factors influence the occurrence and high density of krill within submarine canyons along the continental shelf, resulting in high whale abundance within a small spatial area. The study area extends 37 km offshore across a 1,944 km2 marine strip situated between the towns of Torredembarra and Castelldefels. This fin whale feeding ground is exposed to high density marine vessel traffic, given its location between the northern Mediterranean shipping lane, which links Barcelona and Tarragona Ports to the Atlantic Ocean and wider Mediterranean Basin. Ship strikes represent the greatest conservation threat for fin whales in the Mediterranean Sea. At least four fin whales have been found dead in Barcelona Port since 1986 due to ship strikes and seven live whales have been documented with injuries in the study area since 2018. Fin whale distribution was mapped with known high-risk marine vessels' (cargo, tanker and passenger vessels) shipping lanes. Vessel density and shipping lanes characterised by speed were considered. Collision risk was estimated monthly based on the predicted fin whale occurrence and traffic density. Several shipping lanes crossed the fin whale feeding habitat every month with an average speed of 15 kn. Cargo vessels displayed the highest ship-strike risk during April, overlapping with the peak of fin whale sightings in the critical feeding area. Slower vessel speeds (8 kn) in waters <200 m depth or along the continental shelf should be implemented al
Jérôme OLLIER

A meta-deep-learning framework for spatio-temporal underwater SSP inversion - @FrontMar... - 0 views

  •  
    Sound speed distribution, represented by a sound speed profile (SSP), is of great significance because the nonuniform distribution of sound speed will cause signal propagation path bending with Snell effect, which brings difficulties in precise underwater localization such as emergency rescue. Compared with conventional SSP measurement methods via the conductivity-temperature-depth (CTD) or sound-velocity profiler (SVP), SSP inversion methods leveraging measured sound field information have better real-time performance, such as matched field process (MFP), compressed sensing (CS) and artificial neural networks (ANN). Due to the difficulty in measuring empirical SSP data, these methods face with over-fitting problem in few-shot learning that decreases the inversion accuracy. To rapidly obtain accurate SSP, we propose a task-driven meta-deep-learning (TDML) framework for spatio-temporal SSP inversion. The common features of SSPs are learned through multiple base learners to accelerate the convergence of the model on new tasks, and the model's sensitivity to the change of sound field data is enhanced via meta training, so as to weaken the over-fitting effect and improve the inversion accuracy. Experiment results show that fast and accurate SSP inversion can be achieved by the proposed TDML method.
Jérôme OLLIER

The present and future contribution of ships to the underwater soundscape - @FrontMarin... - 0 views

  •  
    Since the industrial revolution the ocean has become noisier. The global increase in shipping is one of the main contributors to this. In some regions, shipping contributed to an increase in ambient noise of several decibels, especially at low frequencies (10 to 100 Hz). Such an increase can have a substantial negative impact on fish, invertebrates, marine mammals and birds interfering with key life functions (e.g. foraging, mating, resting, etc.). Consequently, engineers are investigating ways to reduce the noise emitted by vessels when designing new ships. At the same time, since the industrial revolution (starting around 1760) greenhouse gas emissions have increased the atmospheric carbon dioxide fraction x(CO2) by more than 100 μmol mol-1. The ocean uptake of approximately one third of the emitted CO2 decreased the average global surface ocean pH from 8.21 to 8.10. This decrease is modifying sound propagation, especially sound absorption at the frequencies affected by shipping noise lower than 10 kHz, making the future ocean potentially noisier. There are also other climate change effects that may influence sound propagation. Sea surface warming might alter the depth of the deep sound speed channel, ice melting could locally decrease salinity and more frequent storms and higher wind speed alter the depth of the thermocline. In particular, modification of the sound speed profile can lead to the appearance of new ducts making specific depths noisier. In addition, ice melting and the increase in seawater temperature will open new shipping routes at the poles increasing anthropogenic noise in these regions. This review aims to discuss parameters that might change in the coming decades, focusing on the contribution of shipping, climate change and economic and technical developments to the future underwater soundscape in the ocean. Examples are given, contrasting the open ocean and the shallow seas. Apart from the changes in sound propagation, this review will also d
xiaobaicai

High Speed Slitting Line - 0 views

  •  
    High Speed Slitting Line is used for coil with different specifications, through uncoiling-slitting-recoiling to needed width coil for the application of all kinds of stamping line
Jérôme OLLIER

Via @WhySharksMatter - Distribution and speed of recreational boats in Danish waters ba... - 0 views

  •  
    * Speed and distribution of small boats were investigated in Danish waters. * Boat speed increased with distance to marinas and varied among boat types. * Boats were most common close to the coast and near densely populated areas. * Harbour porpoises had a risk >10% of exposure to boats in 3% of the study area. * Boat noise may affect porpoises in coastal areas between Sweden and Denmark.
Jérôme OLLIER

Maersk Line upgrades Asia-North Europe, cutting port calls to retain speed - @SeaNews_Tr - 0 views

  •  
    Maersk Line upgrades Asia-North Europe, cutting port calls to retain speed.
Jérôme OLLIER

Via @PacificCouncil - Protecting blue whales and blue skies Results from 2014 ship spee... - 0 views

  •  
    Protecting blue whales and blue skies Results from 2014 ship speed reduction trial in Santa Barbara Channel.
  •  
    Protecting blue whales and blue skies Results from 2014 ship speed reduction trial in Santa Barbara Channel.
Jérôme OLLIER

BHP Deploys Drones to Speed Port Operations - @Mar_Ex - 0 views

  •  
    BHP Deploys Drones to Speed Port Operations.
1 - 20 of 118 Next › Last »
Showing 20 items per page