Skip to main content

Home/ GAVNet Collaborative Curation/ Group items tagged interaction

Rss Feed Group items tagged

Bill Fulkerson

Diverse interactions and ecosystem engineering can stabilize community assembly | Natur... - 0 views

  •  
    The complexity of an ecological community can be distilled into a network, where diverse interactions connect species in a web of dependencies. Species interact directly with each other and indirectly through environmental effects, however to our knowledge the role of these ecosystem engineers has not been considered in ecological network models. Here we explore the dynamics of ecosystem assembly, where species colonization and extinction depends on the constraints imposed by trophic, service, and engineering dependencies. We show that our assembly model reproduces many key features of ecological systems, such as the role of generalists during assembly, realistic maximum trophic levels, and increased nestedness with mutualistic interactions. We find that ecosystem engineering has large and nonlinear effects on extinction rates. While small numbers of engineers reduce stability by increasing primary extinctions, larger numbers of engineers increase stability by reducing primary extinctions and extinction cascade magnitude. Our results suggest that ecological engineers may enhance community diversity while increasing persistence by facilitating colonization and limiting competitive exclusion.
Bill Fulkerson

Anatomy of an AI System - 1 views

shared by Bill Fulkerson on 14 Sep 18 - No Cached
  •  
    "With each interaction, Alexa is training to hear better, to interpret more precisely, to trigger actions that map to the user's commands more accurately, and to build a more complete model of their preferences, habits and desires. What is required to make this possible? Put simply: each small moment of convenience - be it answering a question, turning on a light, or playing a song - requires a vast planetary network, fueled by the extraction of non-renewable materials, labor, and data. The scale of resources required is many magnitudes greater than the energy and labor it would take a human to operate a household appliance or flick a switch. A full accounting for these costs is almost impossible, but it is increasingly important that we grasp the scale and scope if we are to understand and govern the technical infrastructures that thread through our lives. III The Salar, the world's largest flat surface, is located in southwest Bolivia at an altitude of 3,656 meters above sea level. It is a high plateau, covered by a few meters of salt crust which are exceptionally rich in lithium, containing 50% to 70% of the world's lithium reserves. 4 The Salar, alongside the neighboring Atacama regions in Chile and Argentina, are major sites for lithium extraction. This soft, silvery metal is currently used to power mobile connected devices, as a crucial material used for the production of lithium-Ion batteries. It is known as 'grey gold.' Smartphone batteries, for example, usually have less than eight grams of this material. 5 Each Tesla car needs approximately seven kilograms of lithium for its battery pack. 6 All these batteries have a limited lifespan, and once consumed they are thrown away as waste. Amazon reminds users that they cannot open up and repair their Echo, because this will void the warranty. The Amazon Echo is wall-powered, and also has a mobile battery base. This also has a limited lifespan and then must be thrown away as waste. According to the Ay
Bill Fulkerson

Syntrophy emerges spontaneously in complex metabolic systems - 0 views

  •  
    By exchanging resources, the members of a microbial community can survive in environments where individual species cannot. Despite the abundance of such syntrophy, little is known about its evolutionary origin. The predominant hypothesis is that syntrophy arises when originally independent organisms in the same community become interdependent by accumulating mutations. In this view, syntrophy arises when organisms co-evolve. In sharp contrast we find that different metabolism can interact syntrophically without a shared evolutionary history. We show that syntrophy is an inherent and emergent property of the complex chemical reaction networks that constitute metabolism.
Bill Fulkerson

How can countries safely leave their coronavirus lockdowns? | World Economic Forum - 0 views

  •  
    The time has come to consider an exit strategy. Our mathematical modelling suggests that some version of green zoning would offer this. Through the progressive enlargement of green zones, we would able to rebuild our social and economic interaction in a safe, efficient, and rapid way.
Bill Fulkerson

Trophic rewilding revives biotic resistance to shrub invasion | Nature Ecology & Evolution - 0 views

  •  
    Trophic rewilding seeks to rehabilitate degraded ecosystems by repopulating them with large animals, thereby re-establishing strong top-down interactions. Yet there are very few tests of whether such initiatives can restore ecosystem structure and functions, and on what timescales. Here we show that war-induced collapse of large-mammal populations in Mozambique's Gorongosa National Park exacerbated woody encroachment by the invasive shrub Mimosa pigra-considered one of the world's 100 worst invasive species-and that one decade of concerted trophic rewilding restored this invasion to pre-war baseline levels.
Bill Fulkerson

Newly modeled: Minimum energy requirements for microbial communities to live - 0 views

  •  
    A microbial community is a complex, dynamic system composed of hundreds of species and their interactions, they are found in oceans, soil, animal guts and plant roots. Each system feeds the Earth's ecosystem and their own growth, as they each have their own metabolism that underpin biogeochemical cycles. The same community-level metabolic rates are exploited in biotechnology for water treatment and bioenergy production from organic waste, thus the ability to capture microbial growth rates and metabolic activities within the communities is key for modeling of planetary ecosystem dynamics, animal and plant health and biotechnological waste valorzation.
Bill Fulkerson

Setting the bar for variational quantum algorithms using high-performance classical sim... - 0 views

  •  
    The IBM Quantum team envisions a future where quantum computers interact frictionlessly with high performance computing resources, taking over for the specific problems where quantum can offer a computational advantage. Pushing the envelope of classical computing is crucial to this goal, especially as we develop new quantum algorithms and try to understand which problems are worth tackling with a quantum computer.
Bill Fulkerson

Lancet-gate in the COVID-19 pandemic era: is it alright for science to be wrong? - 0 views

  •  
    Thinking and interacting, intellectually, are essential in solving mankind's problems, such as the pandemic now engulfing our existence. In doing so, however, we need to remain vigilant to the possibility of making mistakes that could lead us to wrong conclusions. Recall
1 - 20 of 74 Next › Last »
Showing 20 items per page