Skip to main content

Home/ GAVNet Collaborative Curation/ Group items tagged metabolic

Rss Feed Group items tagged

Bill Fulkerson

Syntrophy emerges spontaneously in complex metabolic systems - 0 views

  •  
    By exchanging resources, the members of a microbial community can survive in environments where individual species cannot. Despite the abundance of such syntrophy, little is known about its evolutionary origin. The predominant hypothesis is that syntrophy arises when originally independent organisms in the same community become interdependent by accumulating mutations. In this view, syntrophy arises when organisms co-evolve. In sharp contrast we find that different metabolism can interact syntrophically without a shared evolutionary history. We show that syntrophy is an inherent and emergent property of the complex chemical reaction networks that constitute metabolism.
Bill Fulkerson

Newly modeled: Minimum energy requirements for microbial communities to live - 0 views

  •  
    A microbial community is a complex, dynamic system composed of hundreds of species and their interactions, they are found in oceans, soil, animal guts and plant roots. Each system feeds the Earth's ecosystem and their own growth, as they each have their own metabolism that underpin biogeochemical cycles. The same community-level metabolic rates are exploited in biotechnology for water treatment and bioenergy production from organic waste, thus the ability to capture microbial growth rates and metabolic activities within the communities is key for modeling of planetary ecosystem dynamics, animal and plant health and biotechnological waste valorzation.
Bill Fulkerson

Organized chaos in the enzyme complex-surprising insights and new perspectives - 0 views

  •  
    For protein molecules that contribute to metabolism, interactions with other components of their metabolic pathway can be crucial. Scientists at the Max Planck Institute for Developmental Biology in Tübingen have now investigated a natural enzyme complex that comprises 10 enzymes with five distinct activities. They found that the molecular architecture is surprisingly compact, yet offers individual enzymes maximum free moving space, which opens up novel perspectives for drug discovery. The scientists have published their results in Nature Chemical Biology.
Bill Fulkerson

How Absentee Landowners Keep Farmers From Protecting Water And Soil - 0 views

  •  
    The application of network science to biology has advanced our understanding of the metabolism of individual organisms and the organization of ecosystems but has scarcely been applied to life at a planetary scale. To characterize planetary-scale biochemistry, we constructed biochemical networks using a global database of 28,146 annotated genomes and metagenomes and 8658 cataloged biochemical reactions. We uncover scaling laws governing biochemical diversity and network structure shared across levels of organization from individuals to ecosystems, to the biosphere as a whole. Comparing real biochemical reaction networks to random reaction networks reveals that the observed biological scaling is not a product of chemistry alone but instead emerges due to the particular structure of selected reactions commonly participating in living processes. We show that the topology of biochemical networks for the three domains of life is quantitatively distinguishable, with >80% accuracy in predicting evolutionary domain based on biochemical network size and average topology. Together, our results point to a deeper level of organization in biochemical networks than what has been understood so far.
Bill Fulkerson

Universal scaling across biochemical networks on Earth - 0 views

  •  
    The application of network science to biology has advanced our understanding of the metabolism of individual organisms and the organization of ecosystems but has scarcely been applied to life at a planetary scale. To characterize planetary-scale biochemistry, we constructed biochemical networks using a global database of 28,146 annotated genomes and metagenomes and 8658 cataloged biochemical reactions. We uncover scaling laws governing biochemical diversity and network structure shared across levels of organization from individuals to ecosystems, to the biosphere as a whole. Comparing real biochemical reaction networks to random reaction networks reveals that the observed biological scaling is not a product of chemistry alone but instead emerges due to the particular structure of selected reactions commonly participating in living processes. We show that the topology of biochemical networks for the three domains of life is quantitatively distinguishable, with >80% accuracy in predicting evolutionary domain based on biochemical network size and average topology. Together, our results point to a deeper level of organization in biochemical networks than what has been understood so far.
1 - 6 of 6
Showing 20 items per page