Skip to main content

Home/ ErgodicPNT/ Group items tagged zeta

Rss Feed Group items tagged

15More

Structure and randomness in the prime numbers « What's new - 0 views

  • 2 July, 2008 at 6:28 pm Terence Tao It unfortunately seems that the decomposition claimed in equation (6.9) on page 20 of that paper is, in fact, impossible; it would endow the function h (which is holding the arithmetical information about the primes) with an extremely strong dilation symmetry which it does not actually obey. It seems that the author was relying on this symmetry to make the adelic Fourier transform far more powerful than it really ought to be for this problem.
  • 3 July, 2008 at 3:41 am Gergely Harcos I also have some (perhaps milder) troubles with the proof. It seems to me as if Li had treated the Dirac delta on L^2(A) as a function. For example, the first 5 lines of page 28 make little sense to me. Am I missing something here?
  • 4 July, 2008 at 5:15 am Lior Silberman The function defined on page 20 does have a strong dilation symmetry: it is invariant by multiplication by ideles of norm one (since it is merely a function of the norm of ). In particular, it is invariant under multiplication by elements of . I’m probably missing something here. Probably the subtlety is in passing from integration over the nice space of idele classes to the singular space . The topologies on the spaces of adeles and ideles are quite different. There is a formal error in Theorem 3.1 which doesn’t affect the paper: the distribution discussed is not unique. A distribution supported at a point is a sum of derivatives of the delta distribution. Clearly there exist many such with a given special value of the Fourier transform. There is also something odd about this paper: nowhere is it pointed out what is the new contribution of the paper. Specifically, what is the new insight about number theory?
  • ...12 more annotations...
  • 4 July, 2008 at 6:09 am Emmanuel Kowalski A remark concerning Lior’s remark: the function h(u) in the current (v4) version of the paper is _not_ the same as the one that was defined when T. Tao pointed out a problem with it. This earlier one (still visible on arXiv, v1) was defined in different ways depending on whether the idele had at most one or more than one non-unit component, and was therefore not invariant under multiplication by . (It is another problem with looking at such a paper if corrections as drastic as that are made without any indication of when and why).
  • 4 July, 2008 at 8:15 am Terence Tao Dear Lior, Emmanuel is correct. The old definition of h was in fact problematic for a large number of reasons (the author was routinely integrating h on the idele class group C, which is only well-defined if h was -invariant). Changing the definition does indeed fix the problem I pointed out (and a number of other issues too). But Connes has pointed out a much more serious issue, in the proof of the trace formula in Theorem 7.3 (which is the heart of the matter, and is what should be focused on in any future revision): the author is trying to use adelic integration to control a function (namely, h) supported on the ideles, which cannot work as the ideles have measure zero in the adeles. (The first concrete error here arises in the equation after (7.13): the author has made a change of variables on the idele class group C that only makes sense when u is an idele, but u is being integrated over the adeles instead. All subsequent manipulations involving the adelic Fourier transform Hh of h are also highly suspect, since h is zero almost everywhere on the adeles.)
  • More generally, there is a philosophical objection as to why a purely multiplicative adelic approach such as this one cannot work. The argument only uses the multiplicative structure of , but not the additive structure of k. (For instance, the fact that k is a cocompact discrete additive subgroup of A is not used.) Because of this, the arguments would still hold if we simply deleted a finite number of finite places v from the adeles (and from ). If the arguments worked, this would mean that the Weil-Bombieri positivity criterion (Theorem 3.2 in the paper) would continue to hold even after deleting an arbitrary number of places. But I am pretty sure one can cook up a function g which (assuming RH) fails this massively stronger positivity property (basically, one needs to take g to be a well chosen slowly varying function with broad support, so that the Mellin transforms at Riemann zeroes, as well as the pole at 1 and the place at infinity, are negligible but which gives a bad contribution to a single large prime (and many good contributions to other primes which we delete).)
  • Emmanuel Kowalski That’s an interesting point indeed, if one considers that the RH doesn’t work over function fields once we take out a point of a (smooth projective) curve — there arise zeros of the zeta function which are not on the critical line.
  • 6 July, 2008 at 5:28 pm Chip Neville Terence, I have a question about your comment: “Because of this, the arguments would still hold if we simply deleted a finite number of finite places v from the adeles (and from k^*). … (basically, one needs to take g to be a well chosen slowly varying function with broad support, so that the Mellin transforms at Riemann zeroes, as well as the pole at 1 and the place at infinity, are negligible but which gives a bad contribution to a single large prime (and many good contributions to other primes which we delete).)” Does this mean that you would be considering the “reduced” (for lack of a better name) zeta function \prod 1/(1-1/p^{-s}), where the product is taken over the set of primes not in a finite subset S? If so, this “reduced” zeta function has the same zeroes as the standard Riemann zeta function, since the finite product \prod_S 1/(1-1/p^{-s}) is an entire function with no zeroes in the complex plane. Thus the classical situation in the complex plane seems to be very different in this regard from the situation with function fields over smooth projective curves alluded to by Emmanuel above. Does anyone have an example of an infinite set S and corresponding reduced zeta function with zeroes in the half plane Re z > 1/2? A set S of primes p so that \sum_S 1/p^{1/2} converges will not do, since \prod_S 1/(1-1/p^{-s}) is holomorphic in the half plane Re z > 1/2 with no zeroes there. Perhaps a set S of primes P thick enough so that \sum_S 1/p^{1/2} diverges, but thin enough so that \sum_S 1/p converges, might do. This seems to me to be a delicate and difficult matter. I hope these questions do not sound too foolish.
  • 6 July, 2008 at 7:44 pm Terence Tao Dear Chip, Actually, the product has a number of poles on the line , when s is a multiple of . Li’s approach to the RH was not to tackle it directly, but instead to establish the Weil-Bombieri positivity condition which is known to be equivalent to RH. However, the proof of that equivalence implicitly uses the functional equation for the zeta function (via the explicit formula). If one starts deleting places (i.e. primes) from the problem, the RH stays intact (at least on the half-plane ), but the positivity condition does not, because the functional equation has been distorted.
  • The functional equation, incidentally, is perhaps the one non-trivial way we do know how to exploit the additive structure of k inside the adeles, indeed I believe this equation can be obtained from the Poisson summation formula for the adeles relative to k. But it seems that the functional equation alone is not enough to yield the RH; some other way of exploiting additive structure is also needed, but I have no idea what it should be. [Revised, July 7:] Looking back at Li’s paper, I see now that Poisson summation was indeed used quite a few times, and in actually a rather essential way, so my previous philosophical objection does not actually apply here. My revised opinion is now that, beyond the issues with the trace formula that caused the paper to be withdrawn, there is another fundamental problem with the paper, which is that the author is in fact implicitly assuming the Riemann hypothesis in order to justify some facts about the operator E (which one can think of as a sort of Mellin transform multiplier with symbol equal to the zeta function, related to the operator on ). More precisely, on page 18, the author establishes that and asserts that this implies that , but this requires certain invertibility properties of E which fail if there is a zero off of the critical line. (A related problem is that the decomposition used immediately afterwards is not justified, because is merely dense in rather than equal to it.)
  • 7 July, 2008 at 9:59 am javier Dear Terence, I am not sure I understand your “philosophical” complain on using only the multiplicative structure and not the additive one. This is essentially the philosophy while working over the (so over-hyped lately) field with one element, which apparently comes into the game in the description of the Connes-Bost system on the latest Connes-Consani-Marcolli paper (Fun with F_un). From an algebraic point of view, you can often recover the additive structure of a ring from the multiplicative one provided that you fix the zero. There is an explanation of this fact (using the language of monads) in the (also famous lately) work by Nikolai Durov “A new approach to Arakelov geometry (Section 4.8, on additivity on algebraic monads). By the way, I wanted to tell you that I think you are doing an impressive work with this blog and that I really enjoy learning from it, even if this is the very first time I’ve got something sensible to say :-)
  • 7 July, 2008 at 11:01 am Terence Tao Dear Javier, I must confess I do not understand the field with one element much at all (beyond the formal device of setting q to 1 in any formula derived using and seeing what one gets), and don’t have anything intelligent to say on that topic. Regarding my philosophical objection, the point was that if one deleted some places from the adele ring A and the multiplicative group (e.g. if k was the rationals, one could delete the place 2 by replacing with the group of non-zero rationals with odd numerator and denominator) then one would still get a perfectly good “adele” ring in place of A, and a perfectly good multiplicative group in place of (which would be the invertible elements in the ring of rationals with odd denominator), but somehow the arithmetic aspects of the adeles have been distorted in the process (in particular, Poisson summation and the functional equation get affected). The Riemann hypothesis doesn’t seem to extend to this general setting, so that suggests that if one wants to use adeles to prove RH, one has to somehow exploit the fact that one has all places present, and not just a subset of such places. Now, Poisson summation does exploit this very fact, and so technically this means that my objection does not apply to Li’s paper, but I feel that Poisson summation is not sufficient by itself for this task (just as the functional equation is insufficient to resolve RH), and some further exploitation of additive (or field-theoretic) structure of k should be needed. I don’t have a precise formalisation of this feeling, though.
  • 7 July, 2008 at 1:22 pm Gergely Harcos Dear Terry, you are absolutely right that Poisson summation over k inside A is the (now) standard way to obtain the functional equation for Hecke L-functions. This proof is due to Tate (his thesis from 1950), you can also find it in Weil’s Basic Number Theory, Chapter 7, Section 5.
  • 15 July, 2008 at 7:57 am michele I think that the paper of Prof. Xian-Jin Li will be very useful for a future and definitive proof of the Riemann hypothesis. Furthermore, many mathematics contents of this paper can be applied for further progress in varios sectors of theoretical physics (p-adic and adelic strings, zeta strings).
  • Babak Hi Terrance, A few months ago I stumbled upon an interesting differential equation while using probability heuristics to explore the distribution of primes. It’s probably nothing, but on the off-chance that it might mean something to a better trained mind, I decided to blog about it: http://babaksjournal.blogspot.com/2008/07/differential-equation-estimating.html -Babak
2More

Science News Online: Ivars Peterson's MathTrek (6/26/99): The Return of Zeta - 0 views

  • References: Cipra, B. 1998. A prime case of chaos. In What's Happening in the Mathematical Sciences, Vol. 4. Providence, R.I.: American Mathematical Society. (Available at http://www.ams.org/new-in-math/happening.html.) ______. 1996. Prime formula weds number theory and quantum physics. Science 274(Dec. 20):2014. Davis, P.J., and R. Hersch. 1981. The Mathematical Experience. New York: Viking Penguin. Katz, N.M., and P. Sarnak. 1999. Zeroes of zeta functions and symmetry. Bulletin of the American Mathematical Society 36(January):1. Peterson, I. 1995. Cavities of chaos. Science News 147(April 29):264. Richards, I. 1978. Number theory. In Mathematics Today: Twelve Informal Essays. L.A. Steen, ed. New York: Springer-Verlag. Peter Sarnak's lecture on random matrix models in number theory and quantum mechanics is available at http://www.msri.org/publications/video/fall98/mandm.html. Andrew Odlyzko's Web page at http://www.research.att.com/~amo/ features computations of the zeros of the zeta function.
  • The Riemann hypothesis was first proposed in 1859 by the German mathematician Georg Friedrich Bernhard Riemann (1826-1866). It concerns the so-called zeta function, which encodes a great deal of information about the seemingly haphazard distribution of prime numbers among the integers (see The Mark of Zeta, June 19, 1999).
1More

Neal Stephenson on Zeta Function Cryptography - 0 views

  • M. Anshel and D. Goldfeld, "Zeta Functions, One-Way Functions, and Pseudorandom Number Generators", Duke Mathematical Journal, Vol. 88 No. 2 (1997) 371-390. "In 1997,Anshel and Goldfeld [6],presented an explicit construction of a pseudorandom number generator arising from an elliptic curve,which can be effectively computed at low computational cost. They introduced a new intractable problem,distinct from integer factorization or the discrete log problem, that leads to a new class of one-way functions based on the theory of zeta functions,and against which there is no known attack."- Richard M. Mollin,"Introduction to Cryptography" CRC Press (2000)
1More

Mathematics of Computation - 0 views

  • We verify a very recent conjecture of Farmer and Rhoades on the asymptotic rate of growth of the derivatives of the Riemann xi function at . We give two separate proofs of this result, with the more general method not restricted to . We briefly describe other approaches to our results, give a heuristic argument, and mention supporting numerical evidence.
3More

One L of a discovery - 0 views

  • A new mathematical object, an elusive cousin of the Riemann zeta-function, was revealed to great acclaim recently at the American Institute of Mathematics. Ce Bian and Andrew Booker from the University of Bristol showed the first example of a third degree transcendental L-function.
  • Functional equations shed light on the properties of those functions that satisfy them, and for L-functions F(s) the functional equation is:   where q is an integer called the level, d is the degree, and the numbers  are Langland's parameters. is an analytic continuation of the factorial function  that is valid not only for integers but all complex numbers. There are two types of L-functions: algebraic and transcendental. These are classified according to their degree. If the Langland's parameters are rational or algebraic (that is, are complex numbers that are roots of non-zero polynomials with rational coefficients), then the L-function is algebraic. If these numbers are transcendental (that is, non-algebraic, such as  or  , then the L-function is transcendental. The Riemann zeta-function is the L-function where the level is 1, the degree is 1 and the Langland's parameters are 0 — that is, a first degree algebraic L-function. The Bristol researchers showed the first example of a third degree transcendental L-function.
1More

Quantization and Arithmetic - 0 views

  • The primary aim of this book is to create situations in which the zeta function, or other L-functions, will appear in spectral-theoretic questions. A secondary aim is to connect pseudo-differential analysis, or quantization theory, to analytic number theory. Both are attained through the analysis of operators on functions on the line by means of their diagonal matrix elements against families of arithmetic coherent states: these are families of discretely supported measures on the line, transforming in specific ways under the part of the metaplectic representation or, more generally, representations from the discrete series of SL(2,R), lying above an arithmetic group such as SL(2,Z).
1More

[0707.1983] Hidden Life of Riemann's Zeta Function 1. Arrow, Bow, and Targets - 0 views

  • The Riemann Hypothesis is reformulated as statements about eigenvalues of some matrices entries of which are defined via Taylor coefficient of the zeta function. These eigenvalues demonstrate interesting visual patterns allowing one to state a number of conjectures.
1More

Recent Perspectives in Random Matrix Theory and Number Theory - Cambridge University Pr... - 0 views

  • In recent years the application of random matrix techniques to analytic number theory has been responsible for major advances in this area of mathematics. As a consequence it has created a new and rapidly developing area of research. The aim of this book is to provide the necessary grounding both in relevant aspects of number theory and techniques of random matrix theory, as well as to inform the reader of what progress has been made when these two apparently disparate subjects meet. This volume of proceedings is addressed to graduate students and other researchers in both pure mathematics and theoretical physics. The contributing authors, who are among the world leading experts in this area, have taken care to write self-contained lectures on subjects chosen to produce a coherent volume.• Self-contained lectures by world-leading experts in the field • The volume is integrated, indexed and cross-referenced • This title covers the most important and recent advances in the subjectContents1. Introduction; 2. Prime number theory and the Riemann zeta-function; 3. Notes on pair correlation of zeros and prime numbers; 4. Notes on eigenvalue distributions for the classical compact groups; 5. Compound nucleus resonances, random matrices and quantum chaos; 6. Families of L-functions and 1-level densities; 7. Basic analytic number theory; 8. Applications of mean value theorems to the theory of the Riemann zeta function; 9. L-functions and the characteristic polynomials of random matrices; 10. Mock gaussian behaviour; 11. Some specimens of L-functions; 12. Computational methods and experiments in analytic number theory.
1More

Read This: Stalking the Riemann Hypothesis - 0 views

  • The connections between the zeros of the zeta-function and random matrix theory have become the most active and exciting threads of research in the hunt for the Riemann hypothesis. Rockmore devotes four chapters at the end of his book to various aspects of this research. He discusses the work of Sarnak and Katz on analogous results for function fields. He also discusses work of Tracy, Widom, and Deift that connects the distribution of eigenvalues of random matrices to properties of permutations. This chapter has the engaging title "God May Not Play Dice, but What About Cards?"
1More

The analytic theory of algebraic numbers - 0 views

  • The analytic theory of algebraic numbers H. M. Stark Source: Bull. Amer. Math. Soc. Volume 81, Number 6 (1975), 961-972. Primary Subjects: 12–02, 12A50, 12A70 Full-text: Access granted (open access) PDF File (1009 KB)
1More

The Large Sieve and its Applications - Cambridge University Press - 0 views

  • Among the modern methods used to study prime numbers, the ‘sieve’ has been one of the most efficient. Originally conceived by Linnik in 1941, the ‘large sieve’ has developed extensively since the 1960s, with a recent realisation that the underlying principles were capable of applications going well beyond prime number theory. This book develops a general form of sieve inequality, and describes its varied applications, including the study of families of zeta functions of algebraic curves over finite fields; arithmetic properties of characteristic polynomials of random unimodular matrices; homological properties of random 3-manifolds; and the average number of primes dividing the denominators of rational points on elliptic curves. Also covered in detail are the tools of harmonic analysis used to implement the forms of the large sieve inequality, including the Riemann Hypothesis over finite fields, and Property (T) or Property (tau) for discrete groups.• Explores new and surprising applications of the large sieve method, an important technique of analytic number theory • Presents applications in fields as wide ranging as topology, probability, arithmetic geometry and discrete group theory • Motivated, clear and self-contained discussions introduce readers to a technique previously confined to one fieldContentsPreface; Prerequisites and notation; 1. Introduction; 2. The principle of the large sieve; 3. Group and conjugacy sieves; 4. Elementary and classical examples; 5. Degrees of representations of finite groups; 6. Probabilistic sieves; 7. Sieving in discrete groups; 8. Sieving for Frobenius over finite fields; Appendix A. Small sieves; Appendix B. Local density computations over finite fields; Appendix C. Representation theory; Appendix D. Property (T) and Property (τ); Appendix E. Linear algebraic groups; Appendix F. Probability theory and random walks; Appendix G. Sums of multiplicative functions; Appendix H. Topology; Bibliography; Index.
1More

ScienceDirect - Journal of Approximation Theory : Prime pairs and the zeta function - 0 views

  • Are there infinitely many prime pairs with given even difference? Most mathematicians think so. Using a strong arithmetic hypothesis, Goldston, Pintz and Yildirim have recently shown that there are infinitely many pairs of primes differing by at most sixteen.There is extensive numerical support for the prime-pair conjecture (PPC) of Hardy and Littlewood [G.H. Hardy, J.E. Littlewood, Some problems of ‘partitio numerorum’. III: On the expression of a number as a sum of primes, Acta Math. 44 (1923) 1–70 (sec. 3)] on the asymptotic behavior of π2r(x), the number of prime pairs with p≤x. Assuming Riemann’s Hypothesis (RH), Montgomery and others have studied the pair-correlation of zeta’s complex zeros, indicating connections with the PPC. Using a Tauberian approach, the author shows that the PPC is equivalent to specific boundary behavior of a function involving zeta’s complex zeros. A certain hypothesis on equidistribution of prime pairs, or a speculative supplement to Montgomery’s work on pair-correlation, would imply that there is an abundance of prime pairs.
1 - 20 of 27 Next ›
Showing 20 items per page