Skip to main content

Home/ ErgodicPNT/ Group items tagged breakthrough

Rss Feed Group items tagged

arithwsun arithwsun

AIM math: GL(3) Maass forms and L-functions - 0 views

  • wo researchers from the University of Bristol exhibited the first example of a third degree transcendental L-function.
  • "This work was made possible by a combination of theoretical advances and the power of modern computers." During his lecture, Bian reported that it took approximately 10,000 hours of computer time to produce his initial results.
arithwsun arithwsun

One L of a discovery - 0 views

  • A new mathematical object, an elusive cousin of the Riemann zeta-function, was revealed to great acclaim recently at the American Institute of Mathematics. Ce Bian and Andrew Booker from the University of Bristol showed the first example of a third degree transcendental L-function.
  • Functional equations shed light on the properties of those functions that satisfy them, and for L-functions F(s) the functional equation is:   where q is an integer called the level, d is the degree, and the numbers  are Langland's parameters. is an analytic continuation of the factorial function  that is valid not only for integers but all complex numbers. There are two types of L-functions: algebraic and transcendental. These are classified according to their degree. If the Langland's parameters are rational or algebraic (that is, are complex numbers that are roots of non-zero polynomials with rational coefficients), then the L-function is algebraic. If these numbers are transcendental (that is, non-algebraic, such as  or  , then the L-function is transcendental. The Riemann zeta-function is the L-function where the level is 1, the degree is 1 and the Langland's parameters are 0 — that is, a first degree algebraic L-function. The Bristol researchers showed the first example of a third degree transcendental L-function.
arithwsun arithwsun

Unconditional pseudorandom generators for low degree polynomials - 0 views

  • We give an explicit construction of pseudorandom generators against low degree polynomials over finite fields. We show that the sum of 2d small-biased generators with error ε2O(d) is a pseudorandom generator against degree d polynomials with error ε. This gives a generator with seed length 2O(d) log(n/ε). Our construction follows the recent breakthrough result of Bogadnov and Viola. Their work shows that the sum of d small-biased generators is a pseudo-random generator against degree d polynomials, assuming the Inverse Gowers Conjecture. However, this conjecture is only proven for d=2,3. The main advantage of our work is that it does not rely on any unproven conjectures.
arithwsun arithwsun

Topics in Harmonic Analysis and Ergodic Theory - Blackwell Online - 0 views

  • Topics in Harmonic Analysis and Ergodic Theory Joseph M. Rosenblatt, Alexander M. Stokolos, Ahmed I. Zayed ISBN: 0821842358 Paperback American Mathematical Society Usually despatched within 3 to 9 days
  • There are strong connections between harmonic analysis and ergodic theory. A recent example of this interaction is the proof of the spectacular result by Terence Tao and Ben Green that the set of prime numbers contains arbitrarily long arithmetic progressions. The breakthrough achieved by Tao and Green is attributed to applications of techniques from ergodic theory and harmonic analysis to problems in number theory.Articles in the present volume are based on talks delivered by plenary speakers at a conference on Harmonic Analysis and Ergodic Theory (DePaul University, Chicago, December 2-4, 2005). Of ten articles, four are devoted to ergodic theory and six to harmonic analysis, although some may fall in either category. The articles are grouped in two parts arranged by topics. Among the topics are ergodic averages, central limit theorems for random walks, Borel foliations, ergodic theory and low pass filters, data fitting using smooth surfaces, Nehari's theorem for a polydisk, uniqueness theorems for multi-dimensional trigonometric series, and Bellman and s-functions.In addition to articles on current research topics in harmonic analysis and ergodic theory, this book contains survey articles on convergence problems in ergodic theory and uniqueness problems on multi-dimensional trigonometric series.
arithwsun arithwsun

Szemeredi's theorem - 30 views

http://in-theory.blogspot.com/2006_05_28_archive.html in theory Saturday, June 03, 2006 Szemeredi's theorem Szemeredi's theorem on arithmetic progressions is one of the great triumphs of the "Hung...

szemeredi

started by arithwsun arithwsun on 03 Sep 07 no follow-up yet
1 - 5 of 5
Showing 20 items per page