Skip to main content

Home/ ErgodicPNT/ Group items tagged course

Rss Feed Group items tagged

arithwsun arithwsun

科学网-[转贴]西文数学书籍大全 4G多资源 - 0 views

  • Number theory : A Computational Introduction to Number Theory and Algebra - Victor Shoup A Concise Introduction to the Theory of Numbers- Baker A. A Course in Arithmetic (graduate level) - J. Serre A course in computational algebraic number theory - Cohen H. A Course in Number Theory and Cryptography 2 ed - Neal Koblitz A Course In Number Theory And Cryptography 2Ed - Koblitz N Advanced Number Theory - Cohn Algebra and number theory - Baker A. Algebraic Groups and Number Theory - Platonov & Rapinchuk Algebraic Number Theory - IYANAGA ALGEBRAIC NUMBER THEORY - MILNE Algorithmic Methods In Algebra And Number Theory - Pohst M Algorithmic number theory - Cohen H. Algorithmic number theory, vol. 1 Efficient algorithms - Bach E., Shallit J. An Explicit Approach To Elementary Number Theory - stein An Introduction to Conformal Field Theory [jnl article] - M. Gaberdiel AN INTRODUCTION TO THE THEORY OF NUMBERS - hardy & wright An Introduction to the Theory of Numbers - Leo Moser An introduction to the theory of numbers 5ed - Niven I., Zuckerman H.S., Montgomery H.L. Analytic number theory - Iwaniec H.,Kowalski E. Analytic Number Theory - Newman D.J. Analytic Number Theory- Jia & Matsumoto Arithmetic Theory of Elliptic Curves - J. Coates Computational Algebraic Number Theory - Pohst M E Computational excursions in analysis and number theory - Borwein P.
  • Only Problems Not Solutions - F. Smarandache Prime Numbers The Most Mysterious Figures in Math - D. Wells Problems In Algebraic Number Theory 2Ed - Murty M , Esmonde J SOlved and unsolved problems in Number Theory - Daniel Shanks Surfing on the Ocean of Numbers - H. Ibstedt Survey Of Diophantine Geometry - Serge Lang The elements of the theory of algebraic numbers - Hilbert.djv The Foundations of Arithmetic 2nd ed. revised - G. Frege The New Book Of Prime Number Records 3rd ed. - P. Ribenboim The Theory of algebraic numbers sec ed - Pollard H., Diamond H.G. the theory of functions and sets of natural numbers - Odifreddi, P Three Pearls of Number Theory - Khinchin Transcendental number theory - Baker A. Unsolved Problems In Number Theory 2 Ed - R K Guy.djv
  • Introduction to Modern Number Theory Fundamental Problems, Ideas and Theories 2nd Edition - Manin I., Panchishkin A Introduction to p-adic numbers and valuation theory- Bachman G. Introduction to the Theory of Numbers 4th ed. - G. Hardy, E. Wright Lectures on topics in algebraic number theory - Ghorpade Mainly Natural Numbers - Studies on Sequences - H. Ibstedt Math. problems and proofs combinatorics, number theory and geometry - B. Kisacanin Mathematical Problems And Proofs Combinatorics, Number Theory, and Geometry - Kluwer Academic My Numbers, My Friends - Popular Lectures on Number Theory My Numbers,My Friends Popular Lectures On Number Theory - Ribenboim Number Theory - Z.Borevitch, I. Shafarevich Number theory for beginners - Weil A. Number theory for computing - Yan S Y. Numerical Mathematics - A. Quarteroni, A. Sacco, F. Saleri Numerical Methods for Engineers and Scientists 2nd ed. - J. Hoffman Numerical Optimization - J. Nocedal, S. Wright Numerical Recipes in C - The Art Of Scientific Computing 2nd ed. Numerical Recipes in Fortran 77 2nd ed. Vol 1 Old And New Problems And Results In Combinatorial Number Theory - Erdos, P.&Graham, R.L
  • ...2 more annotations...
  • Contributions to the Founding of the Theory of Transfinite Numbers - Georg Cantor Definitions, Solved And Unsolved Problems, Conjectures and Theorems, In Number Theory And Geometry - Smarandache F Elementary Methods in Number Theory - Nathanson M.B Elementary Number Theory - Clark Elementary Number Theory - David M. Burton Elementary Number Theory And Primality Tests Elementary Number Theory Notes - santos Elementary theory of numbers - Sierpinski W. Elliptic Curves - Notes for Math 679 - J. Milne, U. Michigan Elliptic Curves 2nd ed. - D. Husemoeller Geometric Theorems, Diophantine Equations and Arithmetic Functions - J. Sandor History of the theory of numbers Vol.2. - Dickson L.E. Introduction To Analytic Number Theory - Apostol
  • Ramanujan's Notebooks : Ramanujan's Notebooks vol 1 - B. Berndt.djv Ramanujan's Notebooks vol 2 - B. Berndt.djv Ramanujan's Notebooks vol 3 - B. Berndt.djv Ramanujan's Notebooks vol 4 - B. Berndt.djv Ramanujan's Notebooks vol 5 - B. Berndt.djv
arithwsun arithwsun

Gowers' note for additive number theory - 0 views

  •  
    I have proposed this course for the academic year 2006-7. The syllabus is Roth's theorem, the geometry of numbers, Freiman's theorem, quasirandomness of graphs and 3-uniform hypergraphs, and Szemerédi's regularity lemmaThe course will be examined as a 24
arithwsun arithwsun

Introductory Lectures on Siegel Modular Forms - Cambridge University Press - 0 views

  • From their inception, Siegel modular forms have been studied extensively because of their significance in both automorphic functions in several complex variables and number theory. The comprehensive theory of automorphic forms to subgroups of algebraic groups and the arithmetical theory of modular forms illustrate these two aspects in an illuminating manner. The author’s aim is to present a straightforward and easily accessible survey of the main ideas of the theory at an elementary level, providing a sound basis from which the reader can study advanced works and undertake original research. This book is based on lectures given by the author for a number of years and is intended for a one-semester graduate course, though it can also be used profitably for self-study. The only prerequisites are a basic knowledge of algebra, number theory and complex analysis.Contents
  • Preface; 1. The modular group; 2. Basic facts on modular forms; 3. Large weights; 4. Small weights; 5. Modular functions; 6. Dirichlet series; Bibliography; Index.
arithwsun arithwsun

Lie groups - 0 views

  • Hall, Brian C. Lie groups, Lie algebras, and representations. An elementary introduction. Graduate Texts in Mathematics, 222. Springer-Verlag, New York, 2003. This is only a recommended text, but it is highly recommended. By emphasizing matrix groups, the book covers most of the important examples occuring in nature while avoiding a lot of the technical difficulties necessary in a more general treatment. It gives an excellent presentation of most of what we'll talk about. I think it will be a great book to read to supplement the lectures. Looking around on the web, I found many copies that were very reasonably priced.
  • Humphreys, James E. Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, 9. Springer-Verlag, New York-Berlin, 1978. A classic. Would have been my choice for a textbook, but unfortunately only covers Lie algebras.
  • Fulton, William; Harris, Joe. Representation theory. A first course. Graduate Texts in Mathematics, 129. Readings in Mathematics. Springer-Verlag, New York, 1991. A beautiful book to read. Very useful for self-study. Bump, Daniel. Lie groups. Graduate Texts in Mathematics, 225. Springer-Verlag, New York, 2004. Perhaps too hard for beginners, but it contains an excellent collection of topics in the final part.
  • ...3 more annotations...
  • Varadarajan, V. S. Lie groups, Lie algebras, and their representations. Graduate Texts in Mathematics, 102. Springer-Verlag, New York, 1984. Another classic. Very comprehensive. Representation theory of Lie groups. Proceedings of the SRC/LMS Research Symposium held in Oxford, June 28--July 15, 1977. Edited by G. L. Luke. London Mathematical Society Lecture Note Series, 34. Cambridge University Press, Cambridge-New York, 1979. See especially the articles by Macdonald and Bott.
  • Onishchik, A. L.; Vinberg, E. B. Lie groups and algebraic groups. Translated by D. A. Leites. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1990. Written with a more algebraic flavor. Takes the unusual approach of omitting almost all proofs and presenting the material as a series of exercies. (This is not as crazy as it sounds. In fact it's a very pleasant read.)
  • Knapp, Anthony W. Lie groups beyond an introduction. Second edition. Progress in Mathematics, 140. Birkhauser Boston, Inc., Boston, MA, 2002. Contains a lot of material with complete proofs. Thorough, but difficult to read if this is your first exposure. Springer, T. A. Linear algebraic groups. Second edition. Progress in Mathematics, 9. Birkhauser Boston, Inc., Boston, MA, 1998. Sure, it's a textbook on algebraic groups, but there's plenty of relevance for the study of Lie groups. Freudenthal, Hans; de Vries, H. Linear Lie groups. Pure and Applied Mathematics, Vol. 35 Academic Press, New York-London 1969. Bizarre and fascinating.
arithwsun arithwsun

What might an expository mathematical wiki be like? « Gowers's Weblog - 0 views

  • trick, that can be used in many mathematical situations. With such tricks, it is usually difficult, and in any case not desirable, to formalize them as lemmas: if you try to do so then almost certainly your formal lemma will not apply in all the situations where the trick does.
  • Of course, in many cases, the devil really is in the details, but nevertheless knowing the overall strategy of proof is extremely valuable when trying to read that proof.
  • Yong-Hui Says: November 3, 2008 at 5:57 pm | Reply I am in MSRI for the cofference discrete Rigity. Green will give the first lecture. I just happen to find a question for that tricki wiki: Whether is there a common-shared refference system for that tricki wiki? Similar to that of Mathscinet of ams math review It will be a basic instrument for a mathematical website.
arithwsun arithwsun

Math 251A - 0 views

  • MATH 254A : Topics in Ergodic Theory Course description: Basic ergodic theorems (pointwise, mean, maximal) and recurrence theorems (Poincare, Khintchine, etc.)  Topological dynamics.  Structural theory of measure-preserving systems; characteristic factors.  Spectral theory of dynamical systems.  Multiple recurrence theorems (Furstenberg, etc.) and connections with additive combinatorics (e.g. Szemerédi’s theorem).  Orbits in homogeneous spaces, especially nilmanifolds; Ratner’s theorem.  Further topics as time allows may include joinings, dynamical entropy, return times theorems, arithmetic progressions in primes, and/or
  •         Instructor: Terence Tao, tao@math.ucla.edu, x64844, MS 6183
arithwsun arithwsun

MIT OpenCourseWare | Mathematics | 18.785 Analytic Number Theory, Spring 2007 | Home - 0 views

  • This course is an introduction to analytic number theory, including the use of zeta functions and L-functions to prove distribution results concerning prime numbers (e.g., the prime number theorem in arithmetic progressions).
arithwsun arithwsun

Szemeredi's theorem - 30 views

http://in-theory.blogspot.com/2006_05_28_archive.html in theory Saturday, June 03, 2006 Szemeredi's theorem Szemeredi's theorem on arithmetic progressions is one of the great triumphs of the "Hung...

szemeredi

started by arithwsun arithwsun on 03 Sep 07 no follow-up yet
1 - 9 of 9
Showing 20 items per page