Skip to main content

Home/ COSEE-West/ Group items matching "predictions" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
1More

UnderwaterTimes.com | Ocean Probes To Help Refine Climate Change Forecastin - 0 views

  •  
    Ocean Probes To Help Refine Climate Change Forecasting; 'Oceanography Is Risky; You Lose Things' by Underwatertimes.com News Service - August 5, 2011 17:43 EST LOS ANGELES, California -- A USC researcher has opened a new window to understanding how the ocean impacts climate change. Lisa Collins, environmental studies lecturer with the USC Dornsife College, spent four years collecting samples from floating sediment traps in the San Pedro Basin off the Los Angeles coast, giving scientists a peek at how much carbon is locked up in the ocean and where it comes from. Collins' research suggests that the majority of particulate organic carbon (POC) falling to the basin floor is marine-derived, not the result of runoff from rainfall. This means that the ocean off the coast of Southern California is acting as a carbon "sink" - taking carbon out of the atmosphere via phytoplankton and locking it up in sediment. Though estimates regarding the effect of carbon in the ocean already exist, her hard data can help climatologists create more accurate predictions of how carbon will impact global warming. What is unique about Collins' study is that it is not just a snapshot of POC falling, but rather a finely detailed record of four years of POC production, showing how much fell and when. "It's all tied to climate change," said Collins, who started the research as a graduate student working for USC Earth Sciences Professor Will Berelson. "This lets us see patterns. "Our data can help climate modelers better predict the interactions between the oceans and atmosphere with respect to carbon which can help them better predict how much carbon dioxide will end up sequestered over the long term as sediments in the ocean," she said. Collins' study is among the longest of its kind in the region. A similar study was conducted in Santa Monica Basin from 1985-1991, and another is currently underway in Hawaii. Her findings appear in the August issue of Deep-Sea Research I. Between Janua
1More

Carboschools library - Material for experiments - 0 views

  •  
    How is global temperature regulated? An experimental representation - Simple experiments to help pupils understand how different parameters regulate temperature at the Earth's surface. Interaction at the Air-Water Interface, part 1 - A very simple experiment to demonstrate gas exchange and equilibration at the boundary layer between air and water. Pupils will also observe acidification of water due to CO2 introduced directly in the water. Interaction at the Air-Water Interface, part 2 - A second set of experiment to demonstrate gas exchange and equilibration at the boundary layer between air and water. Pupils observe a high atmospheric CO2 concentration will produce water acidification. Uptake of Carbon Dioxide from the Water by Plants - The following experiments will demonstrate the role of plants in mitigating the acidification caused when CO2 is dissolved in water. Carbon Dioxide Fertilization of Marine Microalgae (Dunalliela sp.) Cultures: Marine microalgae in different atmospheric CO2 concentration - An experiment designed to illustrate the impact of carbon dioxide on microalgal growth in the aquatic environment. Introduction to the principles of climate modelling - Working with real data in spreadsheets to create a climate model, students discover the global carbon budget and make their own predictions for the next century. Global carbon budget between 1958 and 2007 - Working with real global carbon budget data, students produce graphs to find the best representation of the data to make predictions about human CO2 emissions for the next century. This activity is also a nice application of percentages. Estimation of natural carbon sinks - Working with real global carbon budget data, students estimate how much of the CO2 emitted into the atmosphere as a result of human activities is absorbed naturally each year. How does temperature affect the solubility of CO2 en the water? - The following experiments will explore effects of water temperature on sol
1More

Communities Under Climate Change - 0 views

  •  
    perspective "The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change. "
1More

ScienceDirect.com - Earth-Science Reviews - Recognising ocean acidification in deep tim... - 0 views

  •  
    "Recognising ocean acidification in deep time: An evaluation of the evidence for acidification across the Triassic-Jurassic boundary Sarah E. GreeneCorresponding author contact information, 1, E-mail the corresponding author, Rowan C. Martindale1, E-mail the corresponding author, Kathleen A. Ritterbush E-mail the corresponding author, David J. Bottjer E-mail the corresponding author, Frank A. Corsetti E-mail the corresponding author, William M. Berelson E-mail the corresponding author Department of Earth Sciences, University of Southern California, Los Angeles, California, USA 90089 Received 22 July 2011. Accepted 17 March 2012. Available online 5 April 2012. While demonstrating ocean acidification in the modern is relatively straightforward (measure increase in atmospheric CO2 and corresponding ocean chemistry change), identifying palaeo-ocean acidification is problematic. The crux of this problem is that the rock record is a constructive archive while ocean acidification is essentially a destructive (and/or inhibitory) phenomenon. This is exacerbated in deep time without the benefit of a deep ocean record. Here, we discuss the feasibility of, and potential criteria for, identifying an acidification event in deep time. Furthermore, we investigate the evidence for ocean acidification during the Triassic-Jurassic (T-J) boundary interval, an excellent test case because 1) it occurs in deep time, beyond the reach of deep sea drilling coverage; 2) a potential trigger for acidification is known; and 3) it is associated with one of the 'Big Five' mass extinctions which disproportionately affected modern-style invertebrates. Three main criteria suggest that acidification may have occurred across the T-J transition. 1) The eruption of the Central Atlantic Magmatic Province (CAMP) and the associated massive and rapid release of CO2 coincident with the end-Triassic mass extinction provide a suitable trigger for an acidification event (
1More

NOAA awards grant to advance harmful algal bloom warnings to protect public and animal ... - 0 views

  •  
    Scientists researching harmful algal bloom "hot spots" off southern and central California have been awarded $821,673 for the first year of an anticipated 5-year $4,076,929 project to investigate methods that could provide early warning detection of the toxic blooms, also known as red tides. The research is being conducted in partnership with two U.S. Integrated Ocean Observing System partners - the Central and Northern California Ocean Observing System and the Southern California Coastal Ocean Observing System. The teams will combine the detection and monitoring of the toxic blooms with ocean models that can forecast ocean conditions, potentially leading to bloom predictions.
1More

Time to Adapt to a Warming World, But Where's the Science? - 0 views

  •  
    "Science 25 November 2011: Vol. 334 no. 6059 pp. 1052-1053 DOI: 10.1126/science.334.6059.1052 * News Focus Adaptation to Climate Change Adaptation to Climate Change Time to Adapt to a Warming World, But Where's the Science? 1. Richard A. Kerr With dangerous global warming seemingly inevitable, users of climate information-from water utilities to international aid workers-are turning to climate scientists for guidance. But usable knowledge is in short supply. Figure View larger version: * In this page * In a new window Adapt to that. Climate will change, but decision-makers want to know how, where, and when. "CREDIT: KOOS VAN DER LENDE/NEWSCOM" DENVER, COLORADO-The people who brought us the bad news about climate change are making an effort to help us figure out what to do about it. As climate scientists have shown, continuing to spew greenhouse gases into the atmosphere will surely bring sweeping changes to the world-changes that humans will find it difficult or impossible to adapt to. But beyond general warnings, there is another sort of vital climate research to be done, speakers told 1800 attendees at a meeting here last month. And so far, they warned, researchers have delivered precious little of the essential new science. At the meeting, subtitled "Climate Research in Service to Society,"* the new buzzword was "actionable": actionable science, actionable information, actionable knowledge. "There's an urgent need for actionable climate information based on sound science," said Ghassem Asrar, director of the World Climate Research Programme, the meeting's organizer based in Geneva, Switzerland. What's needed is not simply data but processed information that an engineer sizing a storm-water pipe to serve for the next 50 years or a farmer in Uganda considering irrigating his fields can use to make better decisions in a warming world. Researchers preparing for the next international climate assessment, due in 2013, delive
1More

Coral Bleaching Lesson at Bridge Ocean Education Teacher Resource Center - 0 views

  •  
    Summary: Assess coral bleaching using water temperature data from the NOAA National Data Buoy Center. Objectives * Describe the relationship between corals and zooxanthellae. * Identify stresses to corals. * Explain coral bleaching and the processes that cause coral bleaching. * Examine water temperature data and compare to levels known to induce coral bleaching. * Predict the effects of prolonged, increased temperaturs on coral reefs. Introduction The magnificent beauty of a coral reef is a true masterpiece of Mother Nature. A reef is a sculpture of living organisms, varied in color, texture, shape, and size. The creation of these works of art takes many, many years (some reefs are thousands of years old), and they don't exist solely for show. Reefs are building blocks for rich communities, providing habitat for a myriad of organisms, and they are some of the most diverse ecosystems on the planet. In addition, they support fishing grounds, attract tourists, and protect shorelines from waves and storms. "
1More

Coral Bleaching: A White Hot Problem (COSEE-NOW) - 0 views

  •  
    "Some of the planet's most beautiful and diverse ecosystems are at risk. With temperatures on the rise, coral reefs are at greater risk for coral bleaching. Using ocean observing system data from NOAA's National Data Buoy Center, this classroom activity examines ocean temperatures off Puerto Rico to see how coral reefs are being impacted and predict what's on the horizon. Brought to you by Sea Grant's Bridge website and COSEE-NOW. This activity was developed in response to the 2005 massive coral bleaching event in the Caribbean caused by high sea surface temperatures. Using ocean observing system data, water temperatures can be monitored to evaluate the likeliness of other bleaching events. Via the COSEE-NOW online community, we were able to receive valuable feedback on making the graph of water temperature more user-friendly and expanding the discussion questions to evoke some higher level thinking from students. This activity has been demonstrated to teachers at the National Marine Educators Association conference and Virginia Sea Grant professional development institutes; and to graduate students in several different settings. http://www2.vims.edu/bridge/DATA.cfm?Bridge_Location=archive0406.html"
1More

http://www.benthic-acidification.org - 0 views

  •  
    "What are the impacts of ocean acidification on key benthic (seabed) ecosystems, communities, habitats, species and their life cycles? The average acidity (pH) of the world's oceans has been stable for the last 25 million years. However, the oceans are now absorbing so much man made CO2 from the atmosphere that measurable changes in seawater pH and carbonate chemistry can be seen. It is predicted that this could affect the basic biological functions of many marine organisms. This in turn could have implications for the survival of populations and communities, as well as the maintenance of biodiversity and ecosystem function. In the seas around the UK, the habitats that make up the seafloor, along with the animals associated with them, play a crucial role in maintaining a healthy and productive marine ecosystem. This is important considering 40% of the world's population lives within 100km of the coast and many of these people depend on coastal systems for food, economic prosperity and well-being. Given that coastal habitats also harbour incredibly high levels of biodiversity, any environmental change that affects these important ecosystems could have substantial environmental and economical impacts. During several recent international meetings scientific experts have concluded that new research is urgently needed. In particular we need long-term studies that determine: which organisms are likely to be tolerant to high CO2 and which are vulnerable; whether organisms will have time to adapt or acclimatise to this rapid environmental change; and how the interactions between individuals that determine ecosystem structure will be affected. This current lack of understanding is a major problem as ocean acidification is a rapidly evolving management issue and, with an insufficient knowledge base, policy makers and managers are struggling to formulate effective strategies to sustain and protect the marine environment in the face of ocean acidification."
1More

USC researcher experiments with changing ocean chemistry | 89.3 KPCC - 0 views

  •  
    "USC researcher experiments with changing ocean chemistry Jan. 19, 2011 | Molly Peterson | KPCC In his lab, USC's Dave Hutchins is simulating possible future atmospheres and temperatures for the Earth. He says he's trying to figure out how tiny organisms that form the base of the food web will react to a more carbon-intense ocean. Burning fossil fuels doesn't just put more carbon into the atmosphere and help warm the climate. It's also changing the chemistry of sea water. KPCC's Molly Peterson visits a University of Southern California researcher who studies the consequences of a more corrosive ocean. Tailpipes and refineries and smokestacks as far as the eye can see in Los Angeles symbolize the way people change the planet's climate. They remind Dave Hutchins that the ocean's changing too. Hutchins teaches marine biology at USC. He says about a third of all the carbon, or CO2, that people have pushed into earth's atmosphere ends up in sea water - "which is a good thing for us because if the ocean hadn't taken up that CO2 the greenhouse effect would be far more advanced than it is." He smiles. Hutchins says that carbon is probably not so good for the ocean. "The more carbon dioxide that enters the ocean the more acidic the ocean gets." On the pH scale, smaller numbers represent more acidity. The Monterey Bay Aquarium Research Institute estimates we've pumped 500 million tons of carbon into the world's oceans. Dave Hutchins at USC says that carbon has already lowered the pH value for sea water. "By the end of this century we are going to have increased the amount of acid in the ocean by maybe 200 percent over natural pre-industrial levels," he says. "So we are driving the chemistry of the ocean into new territory - into areas that it has never seen." Hutchins is one of dozens of scientists who study the ripples of that new chemistry into the marine ecosystem. Now for an aside. I make bubbly water at home with a soda machine, and to do that, I pump ca
1More

Ice Flow of the Antarctic Ice Sheet - 0 views

  •  
    "We present a reference, comprehensive, high-resolution, digital mosaic of ice motion in Antarctica assembled from multiple satellite interferometric synthetic-aperture radar data acquired during the International Polar Year 2007 to 2009. The data reveal widespread, patterned, enhanced flow with tributary glaciers reaching hundreds to thousands of kilometers inland over the entire continent. This view of ice sheet motion emphasizes the importance of basal-slip-dominated tributary flow over deformation-dominated ice sheet flow, redefines our understanding of ice sheet dynamics, and has far-reaching implications for the reconstruction and prediction of ice sheet evolution. "
1 - 20 of 22 Next ›
Showing 20 items per page