Skip to main content

Home/ COSEE-West/ Group items tagged usa

Rss Feed Group items tagged

Gwen Noda

ScienceDirect.com - Earth-Science Reviews - Recognising ocean acidification in deep tim... - 0 views

  •  
    "Recognising ocean acidification in deep time: An evaluation of the evidence for acidification across the Triassic-Jurassic boundary Sarah E. GreeneCorresponding author contact information, 1, E-mail the corresponding author, Rowan C. Martindale1, E-mail the corresponding author, Kathleen A. Ritterbush E-mail the corresponding author, David J. Bottjer E-mail the corresponding author, Frank A. Corsetti E-mail the corresponding author, William M. Berelson E-mail the corresponding author Department of Earth Sciences, University of Southern California, Los Angeles, California, USA 90089 Received 22 July 2011. Accepted 17 March 2012. Available online 5 April 2012. While demonstrating ocean acidification in the modern is relatively straightforward (measure increase in atmospheric CO2 and corresponding ocean chemistry change), identifying palaeo-ocean acidification is problematic. The crux of this problem is that the rock record is a constructive archive while ocean acidification is essentially a destructive (and/or inhibitory) phenomenon. This is exacerbated in deep time without the benefit of a deep ocean record. Here, we discuss the feasibility of, and potential criteria for, identifying an acidification event in deep time. Furthermore, we investigate the evidence for ocean acidification during the Triassic-Jurassic (T-J) boundary interval, an excellent test case because 1) it occurs in deep time, beyond the reach of deep sea drilling coverage; 2) a potential trigger for acidification is known; and 3) it is associated with one of the 'Big Five' mass extinctions which disproportionately affected modern-style invertebrates. Three main criteria suggest that acidification may have occurred across the T-J transition. 1) The eruption of the Central Atlantic Magmatic Province (CAMP) and the associated massive and rapid release of CO2 coincident with the end-Triassic mass extinction provide a suitable trigger for an acidification event (
Gwen Noda

Increasing N Abundance in the Northwestern Pacific Ocean Due to Atmospheric Nitrogen De... - 0 views

  •  
    "Published Online September 22 2011 Science 28 October 2011: Vol. 334 no. 6055 pp. 505-509 DOI: 10.1126/science.1206583 Report Increasing N Abundance in the Northwestern Pacific Ocean Due to Atmospheric Nitrogen Deposition Tae-Wook Kim1, Kitack Lee1,*, Raymond G. Najjar2, Hee-Dong Jeong3, Hae Jin Jeong4 + Author Affiliations 1School of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 790−784, Korea. 2Department of Meteorology, The Pennsylvania State University, University Park, PA 16802, USA. 3East Sea Fisheries Research Institute, National Fisheries Research and Development Institute, Gangneung, 210-861, Korea. 4School of Earth and Environmental Sciences, Seoul National University, Seoul, 151−747, Korea. ↵*To whom correspondence should be addressed. E-mail: ktl@postech.ac.kr Abstract The relative abundance of nitrate (N) over phosphorus (P) has increased over the period since 1980 in the marginal seas bordering the northwestern Pacific Ocean, located downstream of the populated and industrialized Asian continent. The increase in N availability within the study area was mainly driven by increasing N concentrations and was most likely due to deposition of pollutant nitrogen from atmospheric sources. Atmospheric nitrogen deposition had a high temporal correlation with N availability in the study area (r = 0.74 to 0.88), except in selected areas wherein riverine nitrogen load may be of equal importance. The increase in N availability caused by atmospheric deposition and riverine input has switched extensive parts of the study area from being N-limited to P-limited. "
Gwen Noda

Two Critics Without a Clue - 0 views

  •  
    Evolution Two Critics Without a Clue What Darwin Got Wrong by Jerry Fodor and Massimo Piattelli-Palmarini Farrar, Straus and Giroux, New York, 2010. 286 pp. $26. ISBN 9780374288792. Profile, London. 280 pp. £20. ISBN 9781846682193. 1. Douglas J. Futuyma + Author Affiliations 1. The reviewer is at the Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building, Stony Brook, NY 11794-5245, USA. 1. E-mail: futuyma@life.bio.sunysb.edu Summary Objecting on both philosophical and empirical grounds, Fodor and Piattelli-Palmarini reject natural selection as the mechanism of adaptive evolution.
1 - 20 of 46 Next › Last »
Showing 20 items per page