Skip to main content

Home/ COSEE-West/ Group items tagged consequences

Rss Feed Group items tagged

1More

USC researcher experiments with changing ocean chemistry | 89.3 KPCC - 0 views

  •  
    "USC researcher experiments with changing ocean chemistry Jan. 19, 2011 | Molly Peterson | KPCC In his lab, USC's Dave Hutchins is simulating possible future atmospheres and temperatures for the Earth. He says he's trying to figure out how tiny organisms that form the base of the food web will react to a more carbon-intense ocean. Burning fossil fuels doesn't just put more carbon into the atmosphere and help warm the climate. It's also changing the chemistry of sea water. KPCC's Molly Peterson visits a University of Southern California researcher who studies the consequences of a more corrosive ocean. Tailpipes and refineries and smokestacks as far as the eye can see in Los Angeles symbolize the way people change the planet's climate. They remind Dave Hutchins that the ocean's changing too. Hutchins teaches marine biology at USC. He says about a third of all the carbon, or CO2, that people have pushed into earth's atmosphere ends up in sea water - "which is a good thing for us because if the ocean hadn't taken up that CO2 the greenhouse effect would be far more advanced than it is." He smiles. Hutchins says that carbon is probably not so good for the ocean. "The more carbon dioxide that enters the ocean the more acidic the ocean gets." On the pH scale, smaller numbers represent more acidity. The Monterey Bay Aquarium Research Institute estimates we've pumped 500 million tons of carbon into the world's oceans. Dave Hutchins at USC says that carbon has already lowered the pH value for sea water. "By the end of this century we are going to have increased the amount of acid in the ocean by maybe 200 percent over natural pre-industrial levels," he says. "So we are driving the chemistry of the ocean into new territory - into areas that it has never seen." Hutchins is one of dozens of scientists who study the ripples of that new chemistry into the marine ecosystem. Now for an aside. I make bubbly water at home with a soda machine, and to do that, I pump ca
1More

Science Magazine: Sign In - 0 views

  •  
    Keeping Coral Clean Seaweed overgrowth is a major problem for coral reefs and also seems to be a consequence of excessive harvesting of herbivorous fish. Dixson and Hay (p. 804) examined this effect on Fijian reefs. Species of small herbivorous gobies and coral-associated damselfish were compared for their effect on the toxic Chlorodesmis seaweed in experiments that required caging colonies of the branching coral Acropora nasuta and the associated fish species. Only the gobies actively removed algal fronds attached to the cages and only one species (itself toxic to predators) ate them; the damselfish simply defected from the arena when toxic algae were present. The hydrophobic toxins exuded in the algal mucus lysed coral polyps releasing cell constituents that, together with the algal toxin, attract the gobies, which then eat the algal fronds. Interestingly, the toxic goby became more toxic to predators after consumption of the seaweed, which may help to drive symbiosis with a coral colony.
1More

Genetically Modified Salmon and Full Impact Assessment - 0 views

  •  
    As the U.S. Food and Drug Administration (FDA) considers approving a genetically modified (GM) Atlantic salmon (Salmo salar), it faces fundamental questions of risk analysis and impact assessment. The GM salmon-whose genome contains an inserted growth gene from Pacific chinook salmon (Oncorhynchus tshawytscha) and a switch-on gene from ocean pout (Zoarces americanus)-would be the first transgenic animal approved for human consumption in the United States (1, 2). But the mechanism for its approval, FDA's new animal drug application (NADA) process (2), narrowly examines only the risks of each GM salmon compared with a non-GM salmon (2, 3). This approach fails to acknowledge that the new product's attributes may affect total production and consumption of salmon. This potentially excludes major human health and environmental impacts, both benefits and risks. Regulators need to consider the full scope of such impacts in risk analyses to avoid unintended consequences (4), yet FDA does not consider ancillary benefits and risks from salmon market expansion (2, 3), a result of what may be an overly narrow interpretation of statutes.
1More

The Yale Forum on Climate Change & The Media » Covering Ocean Acidification: ... - 0 views

  •  
    Covering Ocean Acidification: Chemistry and Considerations Marah Hardt and Carl Safina June 24, 2008 Changing ocean chemistry threatens the survival of marine life as much as warming temperatures. Understanding the basic chemistry of ocean acidification and the relevant consequences for people and wildlife are keys to effective journalism on an issue of growing importance and interest to media audiences.
1More

http://www.oceanacidification.org.uk - 0 views

  •  
    The term ocean acidification is used to describe the ongoing decrease in ocean pH caused by human CO2 emissions, such as the burning of fossil fuels. It is the little known consequence of living in a high CO2 world, dubbed at the 2009 United Nations Climate Change Conference (COP15) as the "evil twin of climate change". The oceans currently absorb approximately half of the CO2 produced by burning fossil fuel; put simply, climate change would be far worse if it were not for the oceans. However, there is a cost to the oceans - when CO2 dissolves in seawater it forms carbonic acid and as more CO2 is taken up by the oceans surface, the pH decreases, moving towards a less alkaline and therefore more acidic state. Already ocean pH has decreased by about 30% and if we continue emitting CO2 at the same rate by 2100 ocean acidity will increase by about 150%, a rate that has not been experienced for at least 400,000 years. Such a monumental alteration in basic ocean chemistry is likely to have wide implications for ocean life, especially for those organisms that require calcium carbonate to build shells or skeletons. Ocean acidification is a relatively new field of research, with most of the studies having been conducted over the last decade. While it is gaining some attention among policy makers, international leaders and the media, scientists find there is still a lack of understanding.
1More

MCBI_Current.pdf (application/pdf Object) - 1 views

  •  
    Current: The Journal of Marine Education, vol 25, no.1 [http://www.mcbi.org/what/what_pdfs/MCBI_Current.pdf] -The Threat of Acidification to Ocean Ecosystems by J. Guinotte and V.J. Fabry -Researcher Spotlight: Gretchen Hofmann, Ecological Physiologist by S. Brooke -Anticipating Ocean Acidification's Economic Consequences on Commerial Fisheries by S.R. Cooley and S.C. Doney
1More

Gulf Drilling Disaster Triggers Scrutiny of Mediterranean Oil Rush - 0 views

  •  
    "Oil Exploration Oil Exploration Gulf Drilling Disaster Triggers Scrutiny of Mediterranean Oil Rush 1. Laura Margottini* A rush to find and extract oil in the Mediterranean Sea is threatening one of the planet's marine biodiversity hot spots, scientists warn. PANTELLERIA, ITALY-This tiny speck in the Mediterranean, home to a few thousand people, seems like one of the most tranquil places in the world. But looks are deceptive. Pantelleria, in the Strait of Sicily halfway between Palermo and Tunis, is close to one of the world's busiest shipping lanes, and of late, its waters have also become the center of a new oil rush. Attracted by Italy's easygoing drilling regulations and low tax on oil extraction, dozens of companies have new plans for exploration and drilling in this part of the Mediterranean Sea. At a recent meeting here,* however, scientists, conservationists, and environmental activists warned that such efforts put several important biodiversity hot spots in danger. An oil disaster like the Deepwater Horizon explosion, which sent oil gushing into the Gulf of Mexico for months, could easily ruin the Mediterranean ecology for a century or longer, some said. The Italian government has recently issued 66 permissions for drilling around its coasts and 25 concessions for exploration. Another 67 applications for exploration are under review. "Italy now represents the region that holds the most exciting and significant long-term opportunities," one company, Northern Petroleum, says on its Web site. The Strait of Sicily is the center of attention, but other biodiversity hot spots, such as the Tremiti Islands in the Adriatic Sea, could soon be explored as well. Italy isn't alone. Tunisia, for example, has granted concessions for oil exploration for most of its Mediterranean waters, without much political opposition. But the areas coveted by oil companies are ecological treasures, researchers and groups such as Greenpeace Italy stress. Last year, the Uni
1More

Carbon-Capture Method Could Poison Oceans - ScienceNOW - 0 views

  •  
    "To help cool a warming world, some scientists have suggested fertilizing the oceans with iron. The idea is to stimulate vast blooms of phytoplankton, which sequester carbon dioxide. But such an approach could have deadly consequences. Experiments in the northern Pacific Ocean show that phytoplankton in waters far from land produce a molecule called domoic acid, a neurotoxin that has killed wildlife and people in coastal areas. "
1 - 11 of 11
Showing 20 items per page