Skip to main content

Home/ COSEE-West/ Group items tagged biological

Rss Feed Group items tagged

Gwen Noda

Communities Under Climate Change - 0 views

  •  
    perspective "The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change. "
Gwen Noda

"orange goo" found in Alaska - 0 views

  •  
    http://www.alaskafisheries.noaa.gov/newsreleases/2011/orangesubstance081811.pdf Alaska - NOAA determines "orange goo" in Alaska's Kivalina village is fungal spores The "orange goo" that washed ashore earlier this month in the remote Eskimo village of Kivalina along Alaska's northwest coast is fungal spores, not microscopic eggs as preliminary analysis indicated. Scientists at the NOAA Alaska Fisheries Science Center's Auke Bay Laboratory announced last week that the substance was biological in nature, rather than oil or pollution as originally thought by concerned residents of Kivalina. Per standard scientific procedure, samples were sent to NOAA's Analytical Response Team for a more thorough and detailed analysis and verification process. At NOAA's National Ocean Service Center for Coastal Environmental Health and Biomolecular Research, based in Charleston, S.C., a team of scientists highly-specialized and equipped to analyze microbiologic phenomena such as this determined that the substance is consistent with spores from a fungi that cause rust, a disease that infects only plants causing a rust-like appearance on leaves and stems. Rust fungi reproduce to infect other plants by releasing spores which disperse often times great distances by wind and water. However, whether this spore belongs to one of the 7,800 known species of rust fungi has not yet been determined. More information will be posted on the Alaska Fisheries Science Center website as it becomes available.
Gwen Noda

COSEE NOW | Blog | Ocean Acidification - 1 views

  •  
    "As the amount of Carbon Dioxide continues to build up in the atmosphere it is also changing the chemistry of the ocean. Ocean surveys and modeling studies have revealed that the pH of the ocean is decreasing (which means the ocean is becoming more acidic) due to increasing concentrations of carbon dioxide. This changing oceanic environment will have severe implications for life in the ocean. COSEE NOW is pleased to present A plague in air and sea: Neutralizing the acid of progress a new audio slideshow that features Debora Inglesias-Rodriguez. In this scientist profile, Dr. Inglesias-Rodriguez, a Biological Oceanographer at the University of Southampton National Oceanography Centre, shares her story of how she grew up loving the ocean and became interested in science. She also explains how witnessing the effects of climate change has lead her to research how organisms like Sea Urchins are being affected by ocean acidification."
Gwen Noda

http://www.benthic-acidification.org - 0 views

  •  
    "What are the impacts of ocean acidification on key benthic (seabed) ecosystems, communities, habitats, species and their life cycles? The average acidity (pH) of the world's oceans has been stable for the last 25 million years. However, the oceans are now absorbing so much man made CO2 from the atmosphere that measurable changes in seawater pH and carbonate chemistry can be seen. It is predicted that this could affect the basic biological functions of many marine organisms. This in turn could have implications for the survival of populations and communities, as well as the maintenance of biodiversity and ecosystem function. In the seas around the UK, the habitats that make up the seafloor, along with the animals associated with them, play a crucial role in maintaining a healthy and productive marine ecosystem. This is important considering 40% of the world's population lives within 100km of the coast and many of these people depend on coastal systems for food, economic prosperity and well-being. Given that coastal habitats also harbour incredibly high levels of biodiversity, any environmental change that affects these important ecosystems could have substantial environmental and economical impacts. During several recent international meetings scientific experts have concluded that new research is urgently needed. In particular we need long-term studies that determine: which organisms are likely to be tolerant to high CO2 and which are vulnerable; whether organisms will have time to adapt or acclimatise to this rapid environmental change; and how the interactions between individuals that determine ecosystem structure will be affected. This current lack of understanding is a major problem as ocean acidification is a rapidly evolving management issue and, with an insufficient knowledge base, policy makers and managers are struggling to formulate effective strategies to sustain and protect the marine environment in the face of ocean acidification."
Gwen Noda

COSEE NOW | Blog | Ocean Acidification - 0 views

  •  
    "As the amount of Carbon Dioxide continues to build up in the atmosphere it is also changing the chemistry of the ocean. Ocean surveys and modeling studies have revealed that the pH of the ocean is decreasing (which means the ocean is becoming more acidic) due to increasing concentrations of carbon dioxide. This changing oceanic environment will have severe implications for life in the ocean. COSEE NOW is pleased to present A plague in air and sea: Neutralizing the acid of progress a new audio slideshow that features Debora Inglesias-Rodriguez. In this scientist profile, Dr. Inglesias-Rodriguez, a Biological Oceanographer at the University of Southampton National Oceanography Centre, shares her story of how she grew up loving the ocean and became interested in science. She also explains how witnessing the effects of climate change has lead her to research how organisms like Sea Urchins are being affected by ocean acidification. Download A plague in air and sea: Neutralizing the acid of progress"
Gwen Noda

Reflections On: Our Planet and Its Life, Origins, and Futures - 0 views

  •  
    "The theme of the 175th Annual Meeting of the American Association for the Advancement of Science (AAAS), "Our Planet and Its Life, Origins, and Futures," celebrated an enormous breadth of scientific accomplishments that transcends many subdisciplines of the natural and social sciences. It was intended to be both a reflection on what has been learned and a look forward to what must yet be better known if we are to make wise choices as stewards of our planet. The program committee saw this as an opportunity to examine how we have come to know and understand the coevolution of life with its interacting biological, biogeochemical, and physical environments. Further advances in this area are essential to develop scenarios that can be useful in guiding decisions to address some of society's most pressing problems. We must work toward a future that embraces the wise application of science to improve human health and well-being and to sustain the great diversity of life on our planet. "
Gwen Noda

Unicellular Cyanobacterial Distributions Broaden the Oceanic N2 Fixation Domain - 0 views

  •  
    "Nitrogen (N2)-fixing microorganisms (diazotrophs) are an important source of biologically available fixed N in terrestrial and aquatic ecosystems and control the productivity of oligotrophic ocean ecosystems. We found that two major groups of unicellular N2-fixing cyanobacteria (UCYN) have distinct spatial distributions that differ from those of Trichodesmium, the N2-fixing cyanobacterium previously considered to be the most important contributor to open-ocean N2 fixation. The distributions and activity of the two UCYN groups were separated as a function of depth, temperature, and water column density structure along an 8000-kilometer transect in the South Pacific Ocean. UCYN group A can be found at high abundances at substantially higher latitudes and deeper in subsurface ocean waters than Trichodesmium. These findings have implications for the geographic extent and magnitude of basin-scale oceanic N2 fixation rates. "
Gwen Noda

The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer - 0 views

  •  
    Nature has evolved efficient strategies to synthesize complex mineralized structures that exhibit exceptional damage tolerance. One such example is found in the hypermineralized hammer-like dactyl clubs of the stomatopods, a group of highly aggressive marine crustaceans. The dactyl clubs from one species, Odontodactylus scyllarus, exhibit an impressive set of characteristics adapted for surviving high-velocity impacts on the heavily mineralized prey on which they feed. Consisting of a multiphase composite of oriented crystalline hydroxyapatite and amorphous calcium phosphate and carbonate, in conjunction with a highly expanded helicoidal organization of the fibrillar chitinous organic matrix, these structures display several effective lines of defense against catastrophic failure during repetitive high-energy loading events.
1 - 13 of 13
Showing 20 items per page