Skip to main content

Home/ Classroom 2.0/ Group items tagged mathematics learner

Rss Feed Group items tagged

Nigel Coutts

Agency and Mathematics - The Learner's Way - 9 views

  •  
    Of all the subjects that our students engage in, mathematics is the one most requiring an injection of learner agency. What is it about mathematics that engenders it to modes of teaching that are so heavily teacher-directed? How might this change if we seek to understand the place that learner agency plays in producing learners who will emerge from our classrooms with a love of mathematics and a deep understanding of its beauty?
Nigel Coutts

A Conceptual approach to Big Understandings and Mathematical Confidence - The Learner's... - 3 views

  •  
    This traditional pedagogy results in students developing a negative attitude towards mathematics. Many develop a mathematical phobia and believe that they are not a "maths person". When confronted by challenging mathematics they retreat and have no or only poor strategies with which to approach new ideas. This all leads to a decline in the number of students pursuing mathematical learning beyond the years where it is compulsory. Fortunately there is a growing body of research that shows there is a better way. 
Nigel Coutts

Rethinking Mathematics Education - The Learner's Way - 10 views

  •  
    What becomes clear, as you dive further into the emerging research that connects what we know about learning, mindsets, dispositions for learning and the development of mathematical understandings, is that a new approach is required. We need to move away from memorisation and rule based simplifications of mathematics and embrace a model of learning that is challenging and exciting. We can and should be emerging all our students in the beauty and power of mathematics in learning environments full of multiple representations, rich dialogue and collaborative learning. 
Nigel Coutts

Mathematical thinking presents teachers and students with new challenges - The Learner'... - 4 views

  •  
    The shift away from teaching for the rote memorisation of prescribed methods requires teachers to rethink their approach to the discipline. With this new pedagogy comes a need to understand the processes of mathematical thinking in ways not previously required. When we require our students to be able to reason and problem-solve through unique challenges we also require our teachers to have an understanding of the mathematical moves that their learners are likely to call upon.
Judy Robison

nrich.maths.org :: Mathematics Enrichment :: July 2009 Front Page - 0 views

  •  
    The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.
Nigel Coutts

Bringing Mathematical Reasoning into our Classrooms - The Learner's Way - 3 views

  •  
    Reasoning is at the heart of mathematical thinking. It is what mathematicians do. But how do we teach it?
Martin Burrett

nrich.maths.org :: Mathematics Enrichment - 2 views

  •  
    The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice. More information on many of our other activities can be found here.
  •  
    Nrich is a vast maths site with great interactive games and resources for young children right up to college mathematicians. http://ictmagic.wikispaces.com/Maths
Nigel Coutts

AAMT Why Maths? - Inspiration beyond the classroom - The Learner's Way - 4 views

  •  
    This week I spent three days in Brisbane attending the Australian Association of Mathematics Teachers' national conference. The theme of the conference was "Why Maths?" and along with 500 other mathematicians, we looked to find inspiring answers to this provocative question beyond the classroom. Here are my key takeaways from this event. 
Nigel Coutts

Number Talks for Number Sense - The Learner's Way - 3 views

  •  
    "Number Talks" is an approach to the teaching and learning of Number Sense. Rather than relying on the rote-memorisation of isolated number facts achieved through drills of "table-facts", Number Talks aim to build confident, number fluency, where learners recognise patterns within and between numbers and understand the properties of numbers and operations. Number Talks are a "mind on" learning task that engages students in an active learning process as they search for patterns, decompose and recompose numbers and develop a flexible understanding.
anonymous

Critical Issue: Using Technology to Improve Student Achievement - 0 views

shared by anonymous on 23 Feb 10 - Cached
  • Technologies available in classrooms today range from simple tool-based applications (such as word processors) to online repositories of scientific data and primary historical documents, to handheld computers, closed-circuit television channels, and two-way distance learning classrooms. Even the cell phones that many students now carry with them can be used to learn (Prensky, 2005).
  • Bruce and Levin (1997), for example, look at ways in which the tools, techniques, and applications of technology can support integrated, inquiry-based learning to "engage children in exploring, thinking, reading, writing, researching, inventing, problem-solving, and experiencing the world." They developed the idea of technology as media with four different focuses: media for inquiry (such as data modeling, spreadsheets, access to online databases, access to online observatories and microscopes, and hypertext), media for communication (such as word processing, e-mail, synchronous conferencing, graphics software, simulations, and tutorials), media for construction (such as robotics, computer-aided design, and control systems), and media for expression (such as interactive video, animation software, and music composition). In a review of existing evidence of technology's impact on learning, Marshall (2002) found strong evidence that educational technology "complements what a great teacher does naturally," extending their reach and broadening their students' experience beyond the classroom. "With ever-expanding content and technology choices, from video to multimedia to the Internet," Marshall suggests "there's an unprecedented need to understand the recipe for success, which involves the learner, the teacher, the content, and the environment in which technology is used."
  • In examining large-scale state and national studies, as well as some innovative smaller studies on newer educational technologies, Schacter (1999) found that students with access to any of a number of technologies (such as computer assisted instruction, integrated learning systems, simulations and software that teaches higher order thinking, collaborative networked technologies, or design and programming technologies) show positive gains in achievement on researcher constructed tests, standardized tests, and national tests.
  • ...4 more annotations...
  • Boster, Meyer, Roberto, & Inge (2002) examined the integration of standards-based video clips into lessons developed by classroom teachers and found increases student achievement. The study of more than 1,400 elementary and middle school students in three Virginia school districts showed an average increase in learning for students exposed to the video clip application compared to students who received traditional instruction alone.
  • Wenglinsky (1998) noted that for fourth- and eighth-graders technology has "positive benefits" on achievement as measured in NAEP's mathematics test. Interestingly, Wenglinsky found that using computers to teach low order thinking skills, such as drill and practice, had a negative impact on academic achievement, while using computers to solve simulations saw their students' math scores increase significantly. Hiebert (1999) raised a similar point. When students over-practice procedures before they understand them, they have more difficulty making sense of them later; however, they can learn new concepts and skills while they are solving problems. In a study that examined relationship between computer use and students' science achievement based on data from a standardized assessment, Papanastasiou, Zemblyas, & Vrasidas (2003) found it is not the computer use itself that has a positive or negative effect on achievement of students, but the way in which computers are used.
  • Another factor influencing the impact of technology on student achievement is that changes in classroom technologies correlate to changes in other educational factors as well. Originally the determination of student achievement was based on traditional methods of social scientific investigation: it asked whether there was a specific, causal relationship between one thing—technology—and another—student achievement. Because schools are complex social environments, however, it is impossible to change just one thing at a time (Glennan & Melmed, 1996; Hawkins, Panush, & Spielvogel, 1996; Newman, 1990). If a new technology is introduced into a classroom, other things also change. For example, teachers' perceptions of their students' capabilities can shift dramatically when technology is integrated into the classroom (Honey, Chang, Light, Moeller, in press). Also, teachers frequently find themselves acting more as coaches and less as lecturers (Henriquez & Riconscente, 1998). Another example is that use of technology tends to foster collaboration among students, which in turn may have a positive effect on student achievement (Tinzmann, 1998). Because the technology becomes part of a complex network of changes, its impact cannot be reduced to a simple cause-and-effect model that would provide a definitive answer to how it has improved student achievement.
  • When new technologies are adopted, learning how to use the technology may take precedence over learning through the technology. "The technology learning curve tends to eclipse content learning temporarily; both kids and teachers seem to orient to technology until they become comfortable," note Goldman, Cole, and Syer (1999). Effective content integration takes time, and new technologies may have glitches. As a result, "teachers' first technology projects generate excitement but often little content learning. Often it takes a few years until teachers can use technology effectively in core subject areas" (Goldman, Cole, & Syer, 1999). Educators may find impediments to evaluating the impact of technology. Such impediments include lack of measures to assess higher-order thinking skills, difficulty in separating technology from the entire instructional process, and the outdating of technologies used by the school. To address these impediments, educators may need to develop new strategies for student assessment, ensure that all aspects of the instructional process—including technology, instructional design, content, teaching strategies, and classroom environment—are conducive to student learning, and conduct ongoing evaluation studies to determine the effectiveness of learning with technology (Kosakowski, 1998).
Nigel Coutts

Do We Truly Understand Place Value? - The Learner's Way - 5 views

  •  
    James Tanton shattered my understanding of the vertical algorithm. More than that, he helped me to see how poorly I understood place value and that many of my students function with the same misunderstanding. What made the experience more humbling was that it took him less than two minutes to do this.
1 - 11 of 11
Showing 20 items per page