Skip to main content

Home/ Groups/ Chem 109H Fall08
Justin Shorb

Window on the Solid State - Unit Cell - 0 views

  • Note that the edges of these cells all connect lattice points in the structure, points with the same environments.
    • Justin Shorb
       
      Be sure that when you draw a unit cell, if you place the 'left' edge against the 'right' edge, they have the same lattice points touching!
  •  
    Helpful for Exam I #3
  •  
    Useful for understanding how Unit Cells work
Justin Shorb

Trends of the Periodic Table - 0 views

  • Atomic Radius
    • Justin Shorb
       
      For a, b (see below for ion size)
  • Electronegativity
    • Justin Shorb
       
      for (c)
  • Ionic Radius vs. Atomic Radius
    • Justin Shorb
       
      For (b)
  • ...1 more annotation...
    • Justin Shorb
       
      Covalency has to do with how polar/non-polar the bond is. The more equal a partnership, the more covalent the bond is. Thus: compare electronegativities. Metal/non-metal pairs form ionic (extreme of polar covalent to the point of being NOT covalent) bonds.
  •  
    Exam I, #1
  •  
    Short exerpts on many basic Periodic Trends
Justin Shorb

Quantum Mechanics: 2-Dimensional Rectangular Box Applet - 0 views

  • java applet
    • Justin Shorb
       
      Try selecting various energy levels at the top of the applet. We have only talked about being in a single energy level at a time - thus deselect an energy level before selecting another one.
  •  
    Only look at this one if you loved problem #9
  •  
    Really in depth look at Energy Levels, Wavefunctions, and superposition of wavefunctions.
Justin Shorb

Periodic Trends - Effective Nuclear Charge - 0 views

  • Slater's Rules
    • Justin Shorb
       
      Note that this is how you would calculate ENC - Although the nucleus gets MORE positive down the PT, the ENC actually decreases! Not just the compensation part, but actually in it's entirety.
  •  
    A good short synopsis of ENC
  •  
    Good for #8 Exam I
Justin Shorb

NSDL.org | Light Color Energy Educational Resources Search Results > Page 1 | The Nati... - 0 views

  • LIGHT: ITS SECRETS REVEALED
    • Justin Shorb
       
      This is a fairly large PDF file, but it has some good visual information!
  •  
    Great PDF talking about light. Good images of how to go from wavelength to sizes of various objects.
John Moore

Diigo Annotation Tutorial - 0 views

    • John Moore
       
      Which is better? Presumably the tool bar is more powerful but the Diigolet is easier to use. Is that right?
    • Justin Shorb
       
      I think that the Digolet is actually easier, and doesn't require an install. The toolbar is more powerful, and the show/hide feature is nice. Try visiting this website to see where a show/hide feature would be nice: http://mashable.com/2006/07/24/diigo-launches-nobody-cares/
ChemPaths UW-Madison

Waves and Wave Motion - 0 views

    • A A
       
      Simple, direct tutorial on waves.
  • Waves can take many forms, but there are two fundamental types of waves: “longitudinal” and “transverse” (see Figures 1 and 2).
    • ChemPaths UW-Madison
       
      We didn't talk about this in class, but it helps explain why some waves can't even be seen moving - like longitudinal waves in the stones during earthquakes!
  •  
    Excellent site on wave mechanics and the history of how we think about waves. Mostly about liquid waves.
Justin Shorb

ChemPaths: Standing Waves: Chladni Plate - 0 views

  • It will produce a loud sound when a resonant frequency is reached.
    • Alex Schwartz
       
      Loud sound also produced by resonant frequencies...notice, resonant light waves produce visibly pleasing results while sound waves produce audibly noticable results.
    • Justin Shorb
       
      Yes, and resonate frequencies can produce non-pleasing results - the age old "shattering wine glass" which happens when an opera singer hits just the right 'resonating' high pitch!
Jongmin Lee

ChemPaths: Black Body Radiation - 0 views

    • Jongmin Lee
       
      Radiation It was discovered that normal objects actually emit radiation, or "glow". At room temperatures, this light that is emitted is usually not visible. But as has been seen on television, the use of night goggles permits the wearer to see infrared light. Warmer objects (like human bodies) appear to glow brighter. This is called black body radiation.
Michael Nonte

http://chemed.chem.wisc.edu/chempaths/paths/index.plx?path=waveTutorial&stone=3 - 0 views

    • Jongmin Lee
       
      As the wave frequency is increased, the wavelength decreases.
    • Justin Shorb
       
      Yes - what do you think this will end up meaning for relating color of light to energy of light? What does a long wavelength mean?
    • Michael Nonte
       
      1-D Vs. 2-D Waves
    • Justin Shorb
       
      Which of these waves was 1D and which 2D?
Jongmin Lee

ChemPaths: Standing Waves - 0 views

    • Jongmin Lee
       
      When a wave is confined to a specific place, only certain wavelengths--those that can fit the space available--are allowed. These allowed waves reflect from the boundaries of the space and the reflection reinforces the original wave (constructive interference). All other wavelengths cancel each other out by destructive interference.
    • ChemPaths UW-Madison
       
      Has anyone determined the pattern in the frequencies for the videos?
Michael Nonte

Mechanical Waves - 0 views

    • Michael Nonte
       
      On this page: -Propagation -Frequency -Wavelength
Becky Kriger

Introduction to DNA Structure - 0 views

  • Pyrimidine Bases Cytosine and thymine are pyrimidines. The 6 stoms (4 carbon, 2 nitrogen) are numbered 1-6. Like purines, all pyrimidine ring atoms lie in the same plane. Structure of C and T
  • DNA is a polymer. The monomer units of DNA are nucleotides, and the polymer is known as a "polynucleotide." Each nucleotide consists of a 5-carbon sugar (deoxyribose), a nitrogen containing base attached to the sugar, and a phosphate group. There are four different types of nucleotides found in DNA, differing only in the nitrogenous base.
  • Adenine and guanine are purines. Purines are the larger of the two types of bases found in DNA. Structures are shown below: Structure of A and G
  • ...9 more annotations...
  • The 9 atoms that make up the fused rings (5 carbon, 4 nitrogen) are numbered 1-9. All ring atoms lie in the same plane.
  • The deoxyribose sugar of the DNA backbone has 5 carbons and 3 oxygens. The carbon atoms are numbered 1', 2', 3', 4', and 5' to distinguish from the numbering of the atoms of the purine and pyrmidine rings. The hydroxyl groups on the 5'- and 3'- carbons link to the phosphate groups to form the DNA backbone
  • A nucleoside is one of the four DNA bases covalently attached to the C1' position of a sugar.
  • Nucleosides differ from nucleotides in that they lack phosphate groups. The four different nucleosides of DNA are deoxyadenosine (dA), deoxyguanosine (dG), deoxycytosine (dC), and (deoxy)thymidine (dT, or T).
  • A nucleotide is a nucleoside with one or more phosphate groups covalently attached to the 3'- and/or 5'-hydroxyl group(s).
  • The DNA backbone is a polymer with an alternating sugar-phosphate sequence. The deoxyribose sugars are joined at both the 3'-hydroxyl and 5'-hydroxyl groups to phosphate groups in ester links, also known as "phosphodiester" bonds.
  • DNA is a normally double stranded macromolecule. Two polynucleotide chains, held together by weak thermodynamic forces, form a DNA molecule.
  • Two DNA strands form a helical spiral, winding around a helix axis in a right-handed spiral The two polynucleotide chains run in opposite directions The sugar-phosphate backbones of the two DNA strands wind around the helix axis like the railing of a sprial staircase The bases of the individual nucleotides are on the inside of the helix, stacked on top of each other like the steps of a spiral staircase.
  • Within the DNA double helix, A forms 2 hydrogen bonds with T on the opposite strand, and G forms 3 hyrdorgen bonds with C on the opposite strand.
Justin Shorb

Construct a Lewis Structure - 0 views

  • Starting with a structure indicating only atom connections
  •  
    Useful for extra help in Lewis Diagrams.
  •  
    Doesn't have the same molecules as Exam I #7, but is useful practice!
Justin Shorb

Chemistry: The Molecular Science - Google Book Search - 0 views

  • Chemistry : the molecular science
  • 8.8 Formal Charge
  •  
    Helps to answer Exam I #4
  •  
    Page in Moore et al. text about Unit cells.
Justin Shorb

cramster.com | problem solved | q&a board questions - 0 views

  • Response Details:
  •  
    Pictures of isomers for Exam I #5
Justin Shorb

Chemistry 12 Worksheet 1-3 - Reaction Mechanisms - 0 views

  • the html version
    • Justin Shorb
       
      Click on the URL at right to access the pdf file!
  •  
    Google HTML version of a pdf - click on the link on the top to download the pdf file.
Becky Kriger

Polymer Tutorial - 0 views

  • "Poly" means "many" and "mer" means "parts.
  • The parts are usually the same part used repeatedly in a chain-like manner. Polymers are also referred to as plastics
  • Nature has many examples of polymers. Cotton fibers are made of sugar molecules that are repeated in a chain-like manner. Hair, wool, and other natural fibers are polymers.
  • ...15 more annotations...
  • Now be aware that one of the connecting sticks can spring open. To see animation of this, move cursor over the image. As long as cursor is over image, animation repeats
  • 1) We start with several pairs of balls each with two connecting sticks. 2) Something causes one of the connecting sticks to fling open. It then connects to another ball, but in doing so, causes one of its connecting sticks to fling open. 3) In moments all of the pairs of balls are now connected. Move cursor over image to see animation.
  • Sometimes heat, high energy light, or something else causes the double-bond to break and two of the middle 4 electrons split up and end up on the two outer ends of the molecule. These electrons are unpaired, which makes them eager to join with another electron.
  • (place cursor over the image to see animated version)
  • The unpaired electron triggers the ethylene molecule that bumps into it, to shift the inside electron to pair with it. That then causes the newly unpaired inner electron to move to the outside and it is now an unpaired electron ready to cause the next ethylene molecule to repeat the process.
  • The name of this polymer is appropriately called, polyethylene.
  • This is called high density polyethylene (HDPE).
  • High density polyethylene HDPE is used for bottles, buckets, jugs, containers, toys, even synthetic lumber, and many other things.
  • Sometimes the chains get up to 500,000 carbons long. Here they are tough enough for synthetic ice, replacement joints and bullet-proof vests. This is called Ultra High Molecular Weight PolyEthylene or UHMWPE.
  • low density polyethylene (LDPE).
  • It is made by causing the long chains of ethylene to branch. That way they cannot lie next each other, which reduces the density of the polyethylene. This makes the plastic lighter and more flexible.
  • Low density polyethylene is used to make plastic bags, plastic wrap, and squeeze bottles, plus many other things.
  • The favorite properties of plastics are that they are inert and won't react with what is stored in them. They also are durable and won't easily decay, dissolve, or break apart. These are great qualities for things you keep, but when you throw them away, they won't decompose.
  • The answer is to recycle the plastics. Here we see a bunch of CDs getting recycled.
  • Here are two recycle code drawings. You already know about HDPE and LDPE.
  •  
    A simply explained introduction to polymers.
Becky Kriger

Polymer - Condensation polymers - 1 views

  • Polymers are made up of extremely large, chainlike molecules consisting of numerous, smaller, repeating units called monomers. Polymer chains, which could be compared to paper clips linked together to make a long strand, appear in varying lengths. They can have branches, become intertwined, and can have cross-links. In addition, polymers can be composed of one or more types of monomer units, they can be joined by various kinds of chemical bonds, and they can be oriented in different ways. Monomers can be joined together by addition, in which all the atoms in the monomer are present in the polymer, or by condensation, in which a small molecule byproduct is also formed.
  • The importance of polymers is evident as they occur widely both in the natural world in such materials as wool, hair, silk and sand, and in the world of synthetic materials in nylon, rubber, plastics, Styrofoam, and many other materials.
  • Polymers are extremely large molecules composed of long chains, much like paper clips that are linked together to make a long strand. The individual subunits, which can range from as few as 50 to more than 20,000, are called monomers (from the Greek mono meaning one and meros meaning part). Because of their large size, polymers (from the Greek poly meaning many) are referred to as macromolecules.
  • ...21 more annotations...
  • Most synthetic polymers are made from the non-renewable resource, petroleum, and as such, the "age of plastics" is limited unless other ways are found to make them. Since most polymers have carbon atoms as the basis of their structure, in theory at least, there are numerous materials that could be used as starting points.
  • Disposing of plastics is also a serious problem, both because they contribute to the growing mounds of garbage accumulating everyday and because most are not biodegradable. Researchers are busy trying to find ways to speed-up the decomposition time which, if left to occur naturally, can take decades.
  • n order for monomers to chemically combine with each other and form long chains, there must be a mechanism by which the individual units can join or bond to each other. One method by which this happens is called addition because no atoms are gained or lost in the process. The monomers simply "add" together and the polymer is called an addition polymer.
  • The simplest chemical structure by which this can happen involves monomers that contain double bonds (sharing two pairs of electrons). When the double bond breaks and changes into a single bond, each of the other two electrons are free and available to join with another monomer that has a free electron. This process can continue on and on. Polyethylene is an example of an addition polymer.
  • The polymerization process can be started by using heat and pressure or ultraviolet light or by using another more reactive chemical such as a peroxide. Under these conditions the double bond breaks leaving extremely reactive unpaired electrons called free radicals. These free radicals react readily with other free radicals or with double bonds and the polymer chain starts to form.
  • ifferent catalysts yield polymers with different properties because the size of the molecule may vary and the chains may be linear, branched, or cross-linked. Long linear chains of 10,000 or more monomers can pack very close together and form a hard, rigid, tough plastic known as high-density polyethylene or HDPE
  • Shorter, branched chains of about 500 monomers of ethylene cannot pack as closely together and this kind of polymer is known as low-density polyethylene or LDPE.
  • The ethylene monomer has two hydrogen atoms bonded to each carbon for a total of four hydrogen atoms that are not involved in the formation of the polymer. Many other polymers can be formed when one or more of these hydrogen atoms are replaced by some other atom or group of atoms.
  • Natural and synthetic rubbers are both addition polymers. Natural rubber is obtained from the sap that oozes from rubber trees. It was named by Joseph Priestley who used it to rub out pencil marks, hence, its name, a rubber. Natural rubber can be decomposed to yield monomers of isoprene.
  • It was sticky and smelly when it got too hot and it got hard and brittle in cold weather. These undesirable properties were eliminated when, in 1839, Charles Goodyear accidentally spilled a mixture of rubber and sulfur onto a hot stove and found that it did not melt but rather formed a much stronger but still elastic product. The process, called vulcanization, led to a more stable rubber product that withstood heat (without getting sticky) and cold (without getting hard) as well as being able to recover its original shape after being stretched. The sulfur makes cross-links in the long polymer chain and helps give it strength and resiliency, that is, if stretched, it will spring back to its original shape when the stress is released.
  • A second method by which monomers bond together to form polymers is called condensation.
  • Unlike addition polymers, in which all the atoms of the monomers are present in the polymer, two products result from the formation of condensation polymers, the polymer itself and another small molecule which is often, but not always, water.
  • One of the simplest of the condensation polymers is a type of nylon called nylon 6.
  • All amino acids molecules have an amine group (NH2) at one end and a carboxylic acid (COOH) group at the other end. A polymer forms when a hydrogen atom from the amine end of one molecule and an oxygen-hydrogen group (OH) from the carboxylic acid end of a second molecule split off and form a water molecule. The monomers join together as a new chemical bond forms between the nitrogen and carbon atoms. This new bond is called an amide linkage.
  • The new molecule, just like each of the monomers from which it formed, also has an amine group at one end (that can add to the carboxylic acid group of another monomer) and it has a carboxylic acid group at the other end (that can add to the amine end of another monomer). The chain can continue to grow and form very large polymers.
  • Polymers formed by this kind of condensation reaction are referred to as polyamides.
  • Nylon became a commercial product for Du Pont when their research scientists were able to draw it into long, thin, symmetrical filaments. As these polymer chains line up side-by-side, weak chemical bonds called hydrogen bonds form between adjacent chains. This makes the filaments very strong.
  • Another similar polymer of the polyamide type is the extremely light-weight but strong material known as Kevlar. It is used in bullet-proof vests, aircraft, and in recreational uses such as canoes. Like nylon, one of the monomers from which it is made is terephthalic acid. The other one is phenylenediamine.
  • Polyesters are another type of condensation polymer, so-called because the linkages formed when the monomers join together are called esters.
  • Probably the best known polyester is known by its trade name, Dacron.
  • Dacron is used primarily in fabrics and clear beverage bottles. Films of Dacron can be coated with metallic oxides, rolled into very thin sheets (only about one-thirtieth the thickness of a human hair), magnetized, and used to make audio and video tapes. When used in this way, it is extremely strong and goes by the trade name Mylar. Because it is not chemically reactive, and is not toxic, allergenic, or flammable, and because it does not promote blood-clotting, it can be used to replace human blood vessels when they are severely blocked and damaged or to replace the skin of burn victims.
Becky Kriger

Chemical of the Week -- Polymers - 0 views

  •  Polymers are substances whose molecules have high molar masses and are composed of a large number of repeating units. There are both naturally occurring and synthetic polymers. Among naturally occurring polymers are proteins, starches, cellulose, and latex. Synthetic polymers are produced commercially on a very large scale and have a wide range of properties and uses. The materials commonly called plastics are all synthetic polymers.
  •    Polymers are formed by chemical reactions in which a large number of molecules called monomers are joined sequentially, forming a chain.
  • If all atoms in the monomers are incorporated into the polymer, the polymer is called an addition polymer. If some of the atoms of the monomers are released into small molecules, such as water, the polymer is called a condensation polymer.
  • ...27 more annotations...
  • Polyethylene terephthalate (PET), or polyethylene terephthalic ester (PETE), is a condensation polymer produced from the monomers ethylene glycol, HOCH2CH2OH, a dialcohol, and dimethyl terephthalate, CH3O2C–C6H4–CO2CH3, a diester. By the process of transesterification, these monomers form ester linkages between them, yielding a polyester
  • PETE fibers are manufactured under the trade names of Dacron and Fortrel.
  • Pleats and creases can be permanently heat set in fabrics containing polyester fibers, so-called permanent press fabrics. PETE can also be formed into transparent sheets and castings.
  • Transparent 2-liter carbonated beverage bottles are made from PETE.
  • ne form of PETE is the hardest known polymer and is used in eyeglass lenses.
  •      Polyethylene is perhaps the simplest polymer, composed of chains of repeating –CH2– units. It is produced by the addition polymerization of ethylene, CH2=CH2 (ethene)
  • HDPE is hard, tough, and resilient. Most HDPE is used in the manufacture of containers, such as milk bottles and laundry detergent jugs.
  • LDPE is relatively soft, and most of it is used in the production of plastic films, such as those used in sandwich bags.
  • Polymerization of vinyl chloride, CH2=CHCl (chloroethene), produces a polymer similar to polyethylene, but having chlorine atoms at alternate carbon atoms on the chain.
  • About two-thirds of the PVC produced annually is used in the manufacture of pipe. It is also used in the production of “vinyl” siding for houses and clear plastic bottles.
  • is used to form flexible articles such as raincoats and shower curtains.
  • This polymer is produced by the addition polymerization of propylene, CH2=CHCH3 (propene). Its molecular structure is similar to that of polyethylene, but has a methyl group (–CH3) on alternate carbon atoms of the chain.
  • olypropylene is used extensively in the automotive industry for interior trim, such as instrument panels, and in food packaging, such as yogurt containers. It is formed into fibers of very low absorbance and high stain resistance, used in clothing and home furnishings, especially carpeting.
  • Styrene, CH2=CH–C6H5, polymerizes readily to form polystyrene (PS), a hard, highly transparent polymer.
  • A large portion of production goes into packaging. The thin, rigid, transparent containers in which fresh foods, such as salads, are packaged are made from polystyrene. Polystyrene is readily foamed or formed into beads. These foams and beads are excellent thermal insulators and are used to produce home insulation and containers for hot foods. Styrofoam is a trade name for foamed polystyrene.
  • eflon is a trade name of polytetrafluoroethylene, PTFE. It is formed by the addition polymerization of tetrafluoroethylene, CF2=CF2 (tetrafluoroethene). PTFE is distinguished by its complete resistance to attack by virtually all chemicals and by its slippery surface. It maintains its physical properties over a large temperature range, -270° to 385°C. These properties make it especially useful for components that must operate under harsh chemical conditions and at temperature extremes. Its most familiar household use is as a coating on cooking utensils.
  • his important class of polymers is formed by the addition polymerization of an diisocyanate (whose molecules contain two –NCO groups) and a dialcohol (two –OH groups).
  • Polyurethane is spun into elastic fibers, called spandex, and sold under the trade name Lycra. Polyurethane can also be foamed. Soft polyurethane foams are used in upholstery, and hard foams are used structurally in light aircraft wings and sail boards.
  • Polyamides are a group of condensation polymers commonly known as nylon. Nylon is made from two monomers, one a dichloride and the other a diamine.
  • Nylon can be readily formed into fibers that are strong and long wearing, making them well suited for use in carpeting, upholstery fabric, tire cords, brushes, and turf for athletic fields. Nylon is also formed into rods, bars, and sheets that are easily formed and machined.
  • Polyacrylamide is a condensation polymer with an unusual and useful property.
  • This produces a network of polymer chains, rather like a tiny sponge. The free, unlinked amide groups, because they contain –NH2 groups, can form hydrogen bonds with water. This gives the tiny cross linked sponges a great affinity for water. Polyacrylamide can absorb many times its mass in water. T
  • his property is useful in a variety of applications, such as in diapers and in potting soil. The polyacrylamide will release the absorbed water if a substance that interferes with hydrogen bonding is added. Ionic substances, such as salt, cause polyacrylamide to release its absorbed water.
  • Over the past few decades, the use of polymers in disposable consumer goods has grown tremendously. This growth is proving to be taxing on the waste disposal system, consuming a large fraction of available landfill space.
  • To help sort wastes by type of polymer, most disposable polymeric goods are labeled with a recycling code: three arrows around a number above the polymer's acronym. These are intended to help consumers separate the waste polymers according to type before disposing of them. In the city of Madison, currently only type 1 (PETE) and type 2 (HDPE) polymers are being recycled – see below. The recycling of polymers is not a closed loop, where a material is reformed into new products repeatedly, such as in the case with aluminum. Most polymeric materials are recycled only once, and the product made of recycled polymer is discarded after use
  • General Rules Remove and discard all lids or caps. Rinse all containers. Remove and discard sprayer tops. CRUSH all plastic bottles to save space. No 5 gallon pails. No containers with metal handles.
  • What can be Recycled?Plastic Code Number Recyclable Containers Soda Bottles Water Bottles Juice Bottles Cooking Oil Bottles Soap/Detergent Bottles Shampoo Bottles Clear Liquor Bottles Food Jars (Peanut Butter etc.) Plastic Code Number Recyclable Containers Milk Bottles Water Bottles Juice Bottles Cooking Oil Containers Windshield Washer Fluid Bottles Shampoo Bottles Butter/Margarine Tubs Cottage Cheese Containers Ice Cream Containers Without Metal Handles Baby Wipe Containers Do NOT Recycle This Plastic 1. Automotive Product Containers Including: Motor Oil Bottles Anti-Freeze Containers Gasoline and Oil Additive Bottles 2. Brown Liquor Bottles 3. All Containers Marked With The Following Codes:            
« First ‹ Previous 41 - 60 Next › Last »
Showing 20 items per page